二次根式知识点及习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1二次根式知识点一:二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,,2而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的性质和最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y等;含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等(3)最终结果分母不含根号。知识点八:二次根式的乘法和除法1.积的算数平方根的性质√ab=√a·√b(a≥0,b≥0)2.乘法法则√a·√b=√ab(a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。3.除法法则√a÷√b=√a÷b(a≥0,b0)二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算数平方根。4.有理化根式。如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。知识点九:二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。知识点十:二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化3知识点十一:分母有理化分母有理化有两种方法I.分母是单项式如:√a/√b=√a×√b/√b×√b=√ab/bII.分母是多项式要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b如图注意:1.根式中不能含有分母2.分母中不能含有根式。4“二次根式”经典练习题【典型例题】一.利用二次根式的双重非负性来解题(0a(a≥0),即一个非负数的算术平方根是一个非负数。)1.下列各式中一定是二次根式的是()。A、3;B、x;C、12x;D、1x2.x取何值时,下列各式在实数范围内有意义。(1);2x(2)121x(3)xx21(4)45xx(5)1213xx(6)若1)1(xxxx,则x的取值范围是(7)若1313xxxx,则x的取值范围是。(7)注:(书写格式(4)由5+x≥0且x+4≠0得x≥-5且x≠-4∴当x≥-5且x≠-4时代数式45xx在实数范围内有意义)3.若13m有意义,则m能取的最小整数值是4.若20m是一个正整数,则正整数m的最小值是________.5..当x为何整数时,1110x有最小整数值,这个最小整数值为。6.若20042005aaa,则22004a=_____________.7.若433xxy,则yx8.设m、n满足329922mmmn,则mn=。9.若m适合关系式35223199199xymxymxyxy,求m的值.10.若三角形的三边a、b、c满足3442baa=0,则第三边c的取值范围是11.方程0|84|myxx,当0y时,m的取值范围是()A、10mB、2mC、2mD、2m5二.利用二次根式的性质2a=|a|=)0()0(0)(aaabaa(即一个数的平方的算术平方根等于这个数的绝对值)来解题1.已知233xx=-x3x,则()A.x≤0B.x≤-3C.x≥-3D.-3≤x≤02..已知ab,化简二次根式ba3的正确结果是()A.abaB.abaC.abaD.aba3.若化简|1-x|-1682xx的结果为2x-5则x的取值范围是()A、x为任意实数B、1≤x≤4C、x≥1D、x≤44.已知a,b,c为三角形的三边,则222)()()(acbacbcba=5.当-3x5时,化简25109622xxxx=。6、化简)0(||2yxxyx的结果是()A.xy2B.yC.yx2D.y7、已知:221aaa=1,则a的取值范围是()。A、0a;B、1a;C、0a或1;D、1a8、把21)2(xx根号外的因式移入根号内,化简结果是()。A、x2;B、2x;C、2xD、x2三.二次根式的化简与计算(二次根式的化简是二次根式运算中的基本要求,其主要依据是二次根式的积商算术平方根的性质及二次根式的性质:(a)2=a(a≥0),即||2aa。)1.把下列各式化成最简二次根式:(1)833(2)224041(3)2255m(4)224yxx2.下列各式中哪些是同类二次根式:(1)75,271,12,2,501,3,101;(2),533cba323cba,4cab,abca63.计算:(1)6)33(27(2)49123aab;(3)accbba53654(4)24182(5)-545321(6))(23522cabcba4.计算(1)25051122183133(2))254414()3191(3323yyxxyyxx5.已知1018222xxxx,则x等于()A.4B.±2C.2D.±46..已知12,12yx,求xyxyxyyx33的值。四.二次根式的分母有理化1已知:132x,求12xx的值。2..已知:x=2323,2323y,求代数式3x2-5xy+3y2的值。3.211+321+431+…+1009914.已知21915xx,试求xx1519的值。五.关于求二次根式的整数部分与小数部分的问题1.估算31-2的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.若3的整数部分是a,小数部分是b,则ba33.已知9+13913与的小数部分分别是a和b,求ab-3a+4b+8的值4.若a,b为有理数,且8+18+81=a+b2,则ba=.六.二次根式的比较大小(1)3220051和(2)-5566和(3)13151517和(倒数法)7二次根式提高测试题一、选择题1.使131xx有意义的x的取值范围是()2.一个自然数的算术平方根为0aa,则与这个自然数相邻的两个自然数的算术平方根为()(A)1,1aa(B)1,1aa(C)221,1aa(D)221,1aa3.若0x,则2xx等于()(A)0(B)2x(C)2x(D)0或2x4.若0,0ab,则3ab化简得()(A)aab(B)aab(C)aab(D)aab5.若1ymy,则21yy的结果为()(A)22m(B)22m(C)2m(D)2m6.已知,ab是实数,且222aabbba,则a与b的大小关系是()(A)ab(B)ab(C)ab(D)ab7.已知下列命题:①22525;②2336;③22333aaa;④22abab.其中正确的有()(A)0个(B)1个(C)2个(D)3个8.若246m与234m化成最简二次根式后的被开方数相同,则m的值为()(A)203(B)5126(C)138(D)1589.当12a时,化简214421aaa等于()(A)2(B)24a(C)a(D)010.化简2244123xxx得()(A)2(B)44x(C)2(D)44x8二、填空题11.若21x的平方根是5,则41_____x.12.当_____x时,式子534xx有意义.13.已知:最简二次根式4ab与23ab的被开方数相同,则_____ab.14.若x是8的整数部分,y是8的小数部分,则____x,_____y.15.已知2009xy,且0xy,则满足上式的整数对,xy有_____.16.若11x,则211_____xx.17.若0xy,且32xyxyx成立的条件是_____.18.若01x,则221144xxxx等于_____.三、解答题19.计算下列各题:(1)311520653;(2)32134273108.333aaaaaa20.已知200620070225522522a,求24aa的值.21.已知yx,是实数,且329922xxxy,求yx65的值.22.若42yx与212yx互为相反数,求代数式32341yyxx的值.23.若abS、、满足357,23abSab,求S的最大值和最小值.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功