2016年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【考点】有理数的估计【答案】B【解析】∵1<2<4,∴124<<,∴122<<.2.若代数式在31x实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x=3【考点】分式有意义的条件【答案】C【解析】要使31x有意义,则x-3≠0,∴x≠3故选C.3.下列计算中正确的是()A.a·a2=a2B.2a·a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【考点】幂的运算【答案】B【解析】A.a·a2=a3,此选项错误;B.2a·a=2a2,此选项正确;C.(2a2)2=4a4,此选项错误;D.6a8÷3a2=2a6,此选项错误。4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】不可能事件的概率【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。A选项摸出的白球的个数是3个,超过2个,是不可能事件。故答案为:A5.运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2-6x+9C.x2+6x+9D.x2+3x+9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=-5,b=1C.a=5,b=-1D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为_______.【考点】有理数的加法【答案】2【解析】原式=212.某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为___________.【考点】科学记数法【答案】6.3×104【解析】科学计数法的表示形式为N=a×10n的形式,其中a为整数且1≤│a│<10,n为N的整数位数减1.13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为_______.【考点】概率公式【答案】13【解析】∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面数字是5的概率为2163.14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【答案】36°【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.【考点】一次函数图形与几何变换【答案】-4≤b≤-2【解析】根据题意:列出不等式b032=0=22=3=2+6+2xyxbbxyxbb<-<代入--满足:-代入满足:,解得-4≤b≤-216.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.【考点】相似三角形,勾股定理【答案】241【解析】连接AC,过点D作BC边上的高,交BC延长线于点H.在Rt△ABC中,AB=3,BC=4,∴AC=5,又CD=10,DA=55,可知△ACD为直角三角形,且∠ACD=90°,易证△ABC∽△CHD,则CH=6,DH=8,∴BD=228241(4+6).三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2).【考点】解一元一次方程【答案】x=2【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,∴x=2.18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【考点】全等三角形的判定和性质【答案】见解析【解析】证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:18430%8%6%动画新闻体育娱乐戏曲节目类型戏曲娱乐动画体育新闻人数2468101214161820请你根据以上的信息,回答下列问题:(1)本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【考点】条形统计图;用样本估计总体;扇形统计图【答案】(1)50,3,72°;(2)160人【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36%50,∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,在扇形统计图中,最喜爱体育的对应扇形圆心角大小事360°×20%=72°;(2)2000×8%=160(人).20.(本题8分)已知反比例函数xy4.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数xy4(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【考点】反比例函数与一次函数的交点问题;考查了平移的性质,一元二次方程的根与系数的关系。【答案】(1)k=-1;(2)面积为6【解析】解:(1)联立44yxykx得kx2+4x-4=0,又∵xy4的图像与直线y=kx+4只有一个公共点,∴42-4∙k∙(—4)=0,∴k=-1.(2)如图:C1平移至C2处所扫过的面积为6.21.(本题8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=54,求FCAF的值.【考点】切线的性质;考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角,弧,弦之间的关系的应用【答案】(1)略;(2)79【解析】(1)证明:连接OC,则OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠CAD=∠OCA,又OA=OC,∴∠OCA=∠OAC,∴∠CAD=∠CAO,∴AC平分∠DAB.(2)解:连接BE交OC于点H,易证OC⊥BE,可知∠OCA=∠CAD,∴COS∠HCF=45,设HC=4,FC=5,则FH=3.又△AEF∽△CHF,设EF=3x,则AF=5x,AE=4x,∴OH=2x∴BH=HE=3x+3OB=OC=2x+4在△OBH中,(2x)2+(3x+3)2=(2x+4)2化简得:9x2+2x-7=0,解得:x=79(另一负值舍去).∴5759AFxFC.22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用,一次函数的应用【答案】(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品【解析】解:(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.∴当x=200时,y1max=1180-200a(3≤a≤5)乙产品:y2=-0.05x²+10x-40(0<x≤80)∴当0<x≤80时,y2随x的增大而增大.当x=80时,y2max=440(万元).∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;1180-200=440,解得a=3.7时,此时选择甲乙产品;1180-200<440,解得3.7<a≤5时,此时选择乙产品.∴当3≤a<3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7<a≤5时,上产乙产品的利润高.23.(本题10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【考点】相似形综合,考查相似三角形