高考物理典型方法及专题:1、物体的平衡问题规律方法特别提示[解平衡问题几种常见方法]1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。3、正交分解法:将各力分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件)00(yxFF多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。7、相似三角形法:利用力的三角形和线段三角形相似。典型例题【例1】(05年浦东)如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上现用水平力F拉着绳子上的一点O,使小球B从图示实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动则在这一过程中,环对杆的摩擦力Ff和环对杆的压力FN的变化情况()A.Ff不变,FN不变B.Ff增大,FN不变C.Ff增大,FN减小D.Ff不变,FN减小训练题如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量及摩擦均不计若将绳一端从A点沿墙稍向上移,系统再次平衡后,则()A.轻杆与竖直墙壁的夹角减小B.绳的拉力增大,轻杆受到的压力减小C.绳的拉力不变,轻杆受的压力减小D.绳的拉力不变,轻杆受的压力不变训练题一轻绳跨过两个等高的定滑轮(不计大小和摩擦),两端分别挂上质量为m1=4Kg和m2=2Kg的物体,如图所示。在滑轮之间的一段绳上悬挂物体m,为使三个物体能保持平衡,求m的取值范围。【例2】A、B、C三个物体通过细线和光滑的滑轮相连,处于静止状态,如图所示,C是一箱砂子,砂子和箱的重力都等于G,动滑轮的质量不计,打开箱子下端开口,使砂子均匀流出,经过时间t0流完,则下图中哪个图线表示在这过程中桌面对物体B的摩擦力f随时间的变化关系()训练题建筑工地上的黄砂,若堆成圆锥形而且不管如何堆其锥角总是不变,试证明之。如果测出其圆锥底的周长为12.1m,高为1.5m,求黄砂之间的动摩擦因数。(设滑动摩擦力与最大静摩擦力相等)【例3】(05年高考)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.(重力加速度为g)训练题如图所示,劲度系数为k2的轻质弹簧竖直放在桌面上,其上端压一质量为m的物块,另一劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起要想使物块在静止时,下面簧产生的弹力为物体重力的23,应将上面弹簧的上端A竖直向上提高多少距离?【例4】如图所示,一个重为G的小球套在竖直放置的半径为R的光滑圆环上,一个劲度系数为k,自然长度为L(L<2R)的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.训练题如图所示,A、B两球用劲度系数为k的轻弹簧相连,B球用长为L的细绳悬于0点,A球固定在0点正下方,且O、A间的距离恰为L,此时绳子所受的拉力为F1,现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2大小之间的关系为()A.F1F2B.F1F2C.F1=F2D.无法确定【例5】如图有一半径为r=0.2m的圆柱体绕竖直轴OO′以ω=9rad/s的角速度匀速转动.今用力F将质量为1kg的物体A压在圆柱侧面,使其以v0=2.4m/s的速度匀速下降.若物体A与圆柱面的摩擦因数μ=0.25,求力F的大小.(已知物体A在水平方向受光滑挡板的作用,不能随轴一起转动.)训练题质量为m的物体,静止地放在倾角为θ的粗糙斜面上,现给物体一个大小为F的横向恒力,如图所示,物体仍处于静止状态,这时物体受的摩擦力大小是多少?例6如图1-5所示,匀强电场方向向右,匀强磁场方向垂直于纸面向里,一质量为m带电量为q的微粒以速度v与磁场垂直、与电场成45˚角射入复合场中,恰能做匀速直线运动,求电场强度E的大小,磁感强度B的大小。训练题如图所示,用一块金属板折成横截面“”示形的金属槽放置在磁感强度为B的匀强磁场中,并以速度v1向右匀速运动,从槽口右侧射入的带电微粒速度的v2,如果微粒进入槽口后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r和周期T为:()A、r=gvv21,T=gv22C、r=gvv21,T=gv12B、r=gv1,T=gv12D、r=gv2,T=gv22例7如图1-6所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为。在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B。在导轨的A、C端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑。求ab棒的最大速度。(已知ab和导轨间的动摩擦因数为,导轨和金属棒的电阻不计)PQMNVV训练题水平放置的金属框架abcd,宽度为0.5m,匀强磁场与框架平面成30°角,如图所示,磁感应强度为0.5T,框架电阻不计,金属杆MN置于框架上可以无摩擦地滑动,MN的质量为0.05kg,电阻为0.2Ω,试求当MN的水平速度为多大时,它对框架的压力恰为零,此时水平拉力应为多大?例8如图是某兴趣小组制作的一种测定水平风力的装置。质量为m的气球系在质量可忽略的细金属丝下端,金属丝上端固定在O点。AB是长为L的均匀电阻丝,阻值为R。金属丝和电阻丝接触良好,摩擦不计。AB的中点C焊接一根导线,从O点也引出一根导线,这两根导线之间接一个零刻度在中间的伏特表V,(金属丝和连接用导线的电阻不计)。图中虚线OC与AB垂直,OC=h,电阻丝AB两端接在电压为U的稳压电源上。整个装置固定,让水平的风直接吹到气球上。那么,从电压表的读数,就可以测出气球受的水平风力的大小。⑴写出水平风力大小F和金属丝偏转角θ间的关系式。⑵写出水平风力大小F和电压表读数U/的关系式。⑶该装置能测定的最大水平风力大小F是多大?能力训练1.(05年南京)如图所示,在用横截面为椭圆形的墨水瓶演示坚硬物体微小弹性形变的演示实验中,能观察到的现象是()A.沿椭圆长轴方向压瓶壁,管中水面上升;沿椭圆短轴方向压瓶壁,管中水面下降B.沿椭圆长轴方向压瓶壁,管中水面下降;沿椭圆短轴方向压瓶壁,管中水面上升C.沿椭圆长轴或短轴方向压瓶壁,管中水面均上升D.沿椭圆长轴或短轴方向压瓶壁,管中水面均下降2.(05年泰安)欲使在粗糙斜面上匀速下滑的物体静止,可采用的方法是()A.在物体上叠放一重物B.对物体施一垂直于斜面的力C.对物体施一竖直向下的力D.增大斜面倾角3.(05年荆门)弹性轻绳的一端固定在O点,另一端拴一个物体,物体静止在水平地面上的B点,并对水平地面有压力,O点的正下方A处有一垂直于纸面的光滑杆,如图所示,OA为弹性轻绳的自然长度现在用水平力使物体沿水平面运动,在这一过程中,物体所受水平面的摩擦力的大小的变化情况是()θA.先变大后变小B.先变小后变大.保持不变.条件不够充分,无法确定4.(05年江西)在水平天花板下用绳AC和BC悬挂着物体m,绳与竖直方向的夹角分别为α=37°和β=53°,且∠ACB为90°,如图1-1-13所示.绳AC能承受的最大拉力为100N,绳BC能承受的最大拉力为180N.重物质量过大时会使绳子拉断.现悬挂物的质量m为14kg.(g=10m/s2,sin37°=0.6,sin53°=0.8)则有)()A.AC绳断,BC不断.AC不断,BC绳断C.AC和BC绳都会断.AC和BC绳都不会断5.如图所示在倾角为37°的斜面上,用沿斜面向上的5N的力拉着重3N的木块向上做匀速运动,则斜面对木块的总作用力的方向是()A.水平向左B.垂直斜面向上C.沿斜面向下.竖直向上6.(05年苏州)当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此经过下落一段距离后将匀速下落,这个速度称为此物体下落的收尾速度。研究发现,在相同环境条件下,球形物体的收尾速度仅与球的半径和质量有关.下表是某次研究的实验数据小球编号ABCDE小球的半径(×10-3m)0.50.51.522.5小球的质量(×10-6kg)254540100小球的收尾速度(m/s)1640402032(1)根据表中的数据,求出B球与C球在达到终极速度时所受阻力之比.(2)根据表中的数据,归纳出球型物体所受阻力f与球的速度大小及球的半径的关系(写出有关表达式、并求出比例系数).(3)现将C号和D号小球用轻质细线连接,若它们在下落时所受阻力与单独下落时的规律相同.让它们同时从足够高的同一高度下落,试求出它们的收尾速度;并判断它们落地的顺序(不需要写出判断理由).7.在倾角为θ绝缘材料做成的斜面上放一个质量为m,带电量为+q的小滑块,滑块与斜面的动摩擦因数为μ,μ<tanθ,整个装置处在大小为B方向垂直斜面向上的匀强磁场中。则滑块在斜面上运动达到的稳定速度大小为。8.如图是滑板的简化示意图.运动员在快艇的水平牵引下,脚踏倾斜滑板在水上匀速滑行,设滑板光滑,且不计质量,滑板的滑水面积为S,滑板与水平方向夹角为θ角(板的前端抬起的角度),水的密度为ρ,理论证明:水对板的作用力大小为F=ρSv2sin2θ,方向垂直于板面,式v为快艇的牵引速度.若运动员受重力为G,则快艇的水平牵引速度v=_____________.快艇水面9.(05年苏州)在广场游玩时,一个小孩将一个充有氢气的气球用细绳系于一个小石块上,并将小石块放置于水平地面上.已知小石块的质量为m1,气球(含球内氢气)的质量为m2,气球体积为V,空气密度为ρ(V和ρ均视作不变量),风沿水平方向吹,风速为υ.已知空气对气球的作用力Ff=kυ(式中k为一已知系数,υ为气球相对空气的速度).开始时,小石块静止在地面上,如图所示.(1)若风速υ在逐渐增大,小孩担心气球会连同小石块一起被吹离地面,试判断是否会出现这一情况,并说明理由.(2)若细绳突然断开,已知气球飞上天空后,在气球所经过的空间中的风速υ为不变量,求气球能达到的最大速度的大小.10.(06年宿迁)在如图所示的装置中,两个光滑的定滑轮的半径很小,表面粗糙的斜面固定在地面上,斜面的倾角为θ=30°。用一根跨过定滑轮的细绳连接甲、乙两物体,把甲物体放在斜面上且连线与斜面平行,把乙物体悬在空中,并使悬线拉直且偏离竖直方向α=60°。现同时释放甲乙两物体,乙物体将在竖直平面内振动,当乙物体运动经过最高点和最低点时,甲物体在斜面上均恰好未滑动。已知乙物体的质量为m=1㎏,若取重力加速度g=10m/s2。求:甲物体的质量及斜面对甲物体的最大静摩擦力。11.如图所示,在绝缘的水平桌面上,固定着两个圆环,它们的半径相等,环面竖直、相互平行,间距是20cm,两环由均匀的电阻丝制成,电阻都是9,在两环的最高点a和b之间接有一个内阻为5.0的直流电源,连接导线的电阻可忽略不计,空间有竖直向上的磁感强度为3.46×10-1T的匀强磁场.一根长度等于两环间距,质量为10g,电