数学复习提纲1第十六章二次根式1.二次根式:式子a(a≥0)叫做二次根式。定义包含三个内容:Ⅰ必需含有二次根号“”;Ⅱ被开方数a≥0;Ⅲa可以是数,也可以是含有字母的式子。例1.下列式子中,是二次根式的有_______(填序号)(1)32(2)6(3)12(4)m(m>0)(5)xy(6)12a(7)352.二次根式有意义的条件:大于或等于0。例2.当x是怎样的实数时,下列式子在实数范围内有意义?※二次根式中字母的取值范围的基本依据:(1)开方数不小于零;(2)分母中有字母时,要保证分母不为零。3.二次根式的双重非负性:a:0a,0a附:具有非负性的式子:0a;0a;02a例3.若,xy为实数,且220xy,则2009xy的值为()A.1B.-1C.2D.-24.二次根式的性质:(1))0()(2aaa(2))0()0(2aaaaaa例4.利用算术平方根的意义填空例5.化简:2)4(=5.二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab=a·b(a≥0,b≥0);ab=ab(a≥0,b0)例6.计算:(1)9×27(2)25×32(3)a5·ab51(4)5·a3·b31例7.计算:①54②2212ba③4925④64100例8.计算:(1)123(2)3128(3)364(4)22649ba1)5(31)4(31)3(238)2(2)1(2xxxxxxx2)4(2)01.0(2)31(2)4(2)01.0(数学复习提纲26.最简二次根式:必须同时满足下列条件(三个不含有):⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。例9.下列各式中,是最简二次根式的是()A.18B.ba2C.22baD.327.同类二次根式:二次根式化成最简二次根式后,若相同,则这几个二次根式就是同类二次根式。例10.下列根式中,与3是同类二次根式的是()A.24B.12C.32D.188.二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.例11.计算:(1)7238550+-(2)xxxx1246932(3)505112218329.有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.例12.计算:(1)(38)×6(2)22)6324((3))52)(32((4)2)232((5)(10-7)(-10-7)(6)12)323242731(数学复习提纲3第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么cba222。应用:在ABC中,90C,则22cab,22bca,22acb)例1.在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________。⑤已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。例2.在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A、6cm2B、8cm2C、10cm2D、12cm22..勾股定理逆定理:如果三角形三边长a,b,c满足cba222,那么这个三角形是直角三角形。应用:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。(定理中a,b,c及222abc只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222acb,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)例3.下列四组线段不能组成直角三角形的是()A.a=8,b=15,c=17B.a=9,b=12,c=15C.a=5,b=3,c=2D.a:b:c=2:3:4例4.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.勾股数①能够构成直角三角形的三边长的三个称为勾股数,即222abc中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等例5.长度分别为3,4,5,12,13的五根木棒能搭成(首尾连接)直角三角形的个数为()A1个B2个C3个D4个例6.在三角形ABC中,AB=12,AC=5,BC=13,则BC边上的高为AD=.例7.如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.数学复习提纲4NMDCBA4.直角三角形的性质(1)直角三角形的两个锐角互余。可表示如下:∠C=90°∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。∠C=90°,∠A=30°BC=21AB(3)直角三角形斜边上的中线等于斜边的一半。∠ACB=90,D为AB的中点CD=21AB=BD=AD5.经过证明被确认正确的命题叫做定理。我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)例8.下列命题的逆命题正确的是().A.全等三角形的面积相等B.全等三角形的对应角相等C.如果a=b,那么a2=b2D.等边三角形的三个角都等于6006.证明:判断一个命题的正确性的推理过程叫做证明。7.证明的一般步骤(1)根据题意,画出图形。(2)根据题设、结论、结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。第十八章平行四边形一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等;对角线:平行四边形的对角线互相平分;例3图面积:①S=底高=ah;例1.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.例2.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.例3.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.例4.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.例5.如图,在□ABCD中,M、N是对角线BD上的两点,BN=DM,请判断AM与CN有怎样的数量关系,并说明理由.它们的位置关系如何呢?例6.□ABCD的周长为60cm,对角线交于点O,△BOC的周长比△AOB的周长小8cm,则AB=______cm,BC=_______cm.例7.□ABCD中,对角线AC和BD交于点O,若AC=8,AB=6,BD=m,那么m的取值范围是_______.3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形;ABDOC数学复习提纲5NMOCBDAODCBAABDCEF例8.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN.例9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.二、特殊的平行四边形(一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:四个角都是直角;③对角线:对角线互相平分且相等;例10.已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB。(1)求证:△AOB是等边三角形。(2)本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?3、矩形的判定:边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD是矩形.例11.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.(二)菱形1、定义:有一组邻边相等的平行四边形是菱形。2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;例12.如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)求证:AE=AF.(2)若∠B=60°,点E,F分别为BC和CD的中点.求证:△AEF为等边三角形.ADBCOODCBA数学复习提纲63、菱形的判定方法:行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321四边形ABCD是菱形.例13.如图,在□ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.例14.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.(三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:①边:四条边都相等;②角:四角都是直角;③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。3、正方形的判定方法:一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.如图:∵DE是△ABC的中位线∴DE∥BC,DE=21BC数学复习提纲7第十九章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做;数值始终不变的量叫做。例1.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为________,则这个问题中,_________常量;________是变量.例2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+50例3.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.函数的判断:对每一个自变量x是否只有唯一的一个函数值y和它对应。三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用二次根式表示的函数,自变量的取值范围是使被开方数为非负数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。例4.一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km