第1页(共13页)绝密★董老师初一绝对值(难)一.填空题(共50小题)1.若|a|=a,则a为数;若|a|=﹣a,则a为数.2.已知a,b,c都是有理数,且满足=1,那么6﹣=.3.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.4.若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x﹣m|+|x+n|+|x+p|的最小值是.5.若|﹣m|=2018,则m=.6.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于.7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.化简|π﹣4|+|3﹣π|=.9.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=.10.已知有理数a,b,c满足+,则=.11.已知a,b,c,d为有理数,且|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,则(2a+b﹣)(2c+4d+3)=.12.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=.13.若|a|=﹣a,则a的取值范围是.14.若abc>0,化简+++结果是.15.已知|a﹣1|=5,|b|=4,且a+b=|a|+|b|,则a﹣b=.16.求绝对值不大于4的所有的整数有个,它们的和是.17.绝对值小于4的整数有个,它们是.18.若•|m|=,则m=.第2页(共13页)19.已知x>3,化简:|3﹣x|=.20.如果a•b<0,那么=.21.如果|2x+5|=3,则x=.22.当y满足时,|y﹣3|=3﹣y成立.23.若有理数m,n,p满足,则=.24.已知整数x1,x2,x3,x4,…满足下列条件,x1=0,x2=﹣|x1+1|,x3=﹣|x2+2|,x4=﹣|x3+3|,x5=﹣|x4+4|,依此类推,则x2017的值为.25.若﹣2<a<3,则化简|2+a|﹣|a﹣3|的结果为.26.|x﹣2|+|x+4|=6,则x的取值范围是.27.若|x﹣1|=4,则x=.28.如图所示,化简|a﹣c|+|a﹣b|+|c|=.29.若x<0,化简=.30.若1<x<3,则|x﹣1|+|x﹣3|=.31.已知|x|=3,|y|=4,且x>y,则3x﹣4y的值是.32.x为有理数,则表达式|x+2|+|x﹣1|的最小值为.33.|x+1|+|x﹣3|的最小值是.34.若,则=.35.已知|a|=3,|b|=5,且a<0,b>0,则a﹣b=.36.若a,b,c为整数,且|a﹣b|2013+|c﹣a|2013=1,则|c﹣a|+|a﹣b|+|c﹣b|的值为.37.当a是大于1而不大于2的有理数时,化简|a﹣2|+|1﹣a|=.38.若有理数a,b,c满足abc>0,则++=.39.若a<1,|3﹣a|﹣|a﹣1|的化简结果为.40.当有理数a满足条件时,|a+4|+|a﹣5|的值最小.41.已知:|x|=|﹣y|,x=﹣3,则y=.42.已知:|m﹣5|=5﹣m,则m5(填“≤”或“≥”).43.(﹣1)2016的绝对值是.44.已知|a﹣1|=5,则a的值为.第3页(共13页)45.若a<b,ab<0:则﹣a+b=(用含|a|和|b|的式子表示)46.已知:|a﹣b|的几何意义为数轴上表示a,b两点之间的距离,你能由此得到方程|x﹣1|=3的解吗?x=.47.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).48.若|a﹣3|=a﹣3,则a=.(请写一个符合条件a的值)49.已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y=.50.若|x﹣3|+x﹣3=0,则|x﹣4|+x的值为.第4页(共13页)初一绝对值(难)参考答案与试题解析一.填空题(共50小题)1.【解答】解:∵|a|=a,∴a为非负数,∵|a|=﹣a,∴a为非正数.故答案为:非负,非正.2.【解答】解:根据绝对值的意义,知:一个非零数的绝对值除以这个数,等于1或﹣1.又=1,则其中必有两个1和一个﹣1,即a,b,c中两正一负.则=﹣1,则6﹣=6﹣(﹣1)=7.故答案为:7.3.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.4.【解答】解:∵mp<0,∴m、p异号,∵m<p,∴p>0,m<0,∵m<n<p且|p|<|n|<|m|,∴n<0,如图所示:∴当x=﹣p时,|x﹣m|+|x+n|+|x+p|有最小值,其最小值是:|x﹣m|+|x+n|+|x+p|=|﹣p﹣m|+|﹣p+n|+|﹣p+p|=﹣p﹣m﹣n+p=﹣m﹣n,则|x﹣m|+|x+n|+|x+p|的最小值是﹣m﹣n,第5页(共13页)故答案为:﹣m﹣n.5.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±20186.【解答】解:根据|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的几何意义,可得|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|表示x到数轴上1,2,3,4四个数的距离之和,∴当x在2和3之间的任意位置时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|有最小值,最小值为4.故答案为:4.7.【解答】解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.9.【解答】解:因为m,n,p都是整数,|m﹣n|+|p﹣m|=1,则有:①|m﹣n|=1,p﹣m=0;解得p﹣n=±1;②|p﹣m|=1,m﹣n=0;解得p﹣n=±1.综合上述两种情况可得:p﹣n=±1.故答案为:±1.10.【解答】解:根据绝对值的意义,知:一个非零数的绝对值除以这个数,等于1或﹣1.又+,则其中必有两个1和一个﹣1,即a,b,c中两正一负.则=﹣1.11.【解答】解:∵|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,第6页(共13页)∴2a+b+c+2d+1=2a+b﹣c﹣2d﹣2或﹣2a﹣b﹣c﹣2d﹣1=2a+b﹣c﹣2d﹣2,∴2c+4d=﹣3或2a+b=,∴(2a+b﹣)(2c+4d+3)=0,故答案为0.12.【解答】解:∵a,b,c都不等于0,∴有以下情况:①a,b,c都大于0,原式=1+1+1+1=4;②a,b,c都小于0,原式=﹣1﹣1﹣1﹣1=﹣4;③a,b,c,一负两正,不妨设a<0,b>0,c>0,原式=﹣1+1+1﹣1=0;④a,b,c,一正两负,不妨设a>0,b<0,c<0,原式=1﹣1﹣1+1=0;∴m=4,n=﹣4,∴m+n=4﹣4=0.故答案为:0.13.【解答】解:若|a|=﹣a,则a的取值范围是a≤0.故答案为:a≤0.14.【解答】解:∵abc>0,∴①a,b,c均大于0,原式=1+1+1+1=4,②a,b,c中只有一个大于0,不妨设a>0,则b<0,c<0,原式=1﹣1﹣1+1=0.故答案为:4或0.15.【解答】解:∵|a﹣1|=5,|b|=4,∴a=﹣4或6,b=±4,∵a+b=|a|+|b|,∴a>0,b>0,∴a=6,b=4,∴a﹣b=2,第7页(共13页)故答案为:2.16.【解答】解:绝对值不大于4的所有的整数是:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,即绝对值不大于4的所有的整数有9个,(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0,故答案为:9,0.17.【解答】解:绝对值小于4的整数有±3,±2,±1,0,共有7个.故答案为:7;±3,±2,±1,0.18.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.19.【解答】解:∵x>3,∴3﹣x<0,∴|3﹣x|=x﹣3,故答案为:x﹣3.20.【解答】解:∵a•b<0,∴|a|和|b|必有一个是它本身,一个是它的相反数,|ab|是它的相反数,∴=1﹣1﹣1=﹣1;或=﹣1+1﹣1=﹣1.故答案为:﹣1.21.【解答】解:∵|2x+5|=3,∴2x+5=±3,解得:x=﹣4或﹣1.故答案为:﹣4或﹣1.22.【解答】解:∵|y﹣3|=3﹣y,第8页(共13页)∴y﹣3≤0,∴y≤3,故答案为y≤3.23.【解答】解:有理数m,n,p满足,所以m、n、p≠0;根据绝对值的性质:①当m>0,n>0,p<0时,原式=1+1﹣1=1,则=;②当m>0,n<0,p>0时,原式=1﹣1+1=1,则=;③当m<0,n>0,p>0时,原式=﹣1+1+1=1,则=;故答案为24.【解答】解:∵x1=0,x2=﹣|x1+1|,x2=﹣1.同理:x3=﹣1;x4=﹣2,x5=﹣2,x6=﹣3,x7=﹣3…∴(2017﹣1)÷2=1008.∴x2017=﹣1008.25.【解答】解:∵﹣2<a<3,∴2+a>0,a﹣3<0,∴|2+a|﹣|a﹣3|=2+a+a﹣3=2a﹣1故答案为:2a﹣1.26.【解答】解:由绝对值的意义可知:|x﹣2|+|x+4|=6表示数轴上某点到表示2与﹣4的点的距离等于6的点的集合.故此x的取值范围是:﹣4≤x≤2.故答案为:﹣4≤x≤2.27.【解答】解:∵|x﹣1|=4,∴x﹣1=±4,解得x=5或﹣3.故答案为:5或﹣3.第9页(共13页)28.【解答】解:|a﹣c|+|a﹣b|+|c|=a﹣c+(﹣a+b)+(﹣c)=a﹣c﹣a+b﹣c=b﹣2c,故答案为:b﹣2c.29.【解答】解:∵x<0,∴==﹣2x.故答案为:﹣2x.30.【解答】解:∵1<x<3,∴x﹣1>0,x﹣3<0,则|x﹣1|+|x﹣3|=x﹣1+[﹣(x﹣3)]=x﹣1﹣x+3=2.故答案为:2.31.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵x>y,∴x=3,y=﹣4或x=﹣3,y=﹣4,当x=3,y=﹣4时,3x﹣4y=3×3﹣4×(﹣4)=25,当x=﹣3,y=﹣4时,3x﹣4y=3×(﹣3)﹣4×(﹣4)=7.故答案为:25或7.32.【解答】解:因为x为有理数,就是说x可以为正数,也可以为负数,也可以为0,所以要分情况讨论.(1)当x<﹣2时,x﹣1<0,x+2<0,所以|x﹣1|+|x+2|=﹣(x﹣1)﹣(x+2)=﹣2x﹣1>3;(2)当﹣2≤x<1时,x﹣1<0,x+2≥0,所以|x﹣1|+|x+2|=﹣(x﹣1)+(x+2)=3;(3)当x≥1时,x﹣1≥0,x+2>0,所以|x﹣1|+|x+2|=(x﹣1)+(x+2)=2x+1≥3;综上所述,所以|x﹣1|+|x+2|的最小值是3.故答案为:3.33.【解答】解:当x≤﹣1时,|x+1|+|x﹣3|=﹣x﹣1﹣x+3=﹣2x+2,则﹣2x+2≥4;当﹣1<x≤3时,|x+1|+|x﹣3|=x+1﹣x+3=4;当x>3时,|x+1|+|x﹣3|=x+1+x﹣3=2x﹣2,则2x﹣2>4.综上所述|x+1|+|x﹣3|的最小值为4.故答案为:4.第10页(共13页)34.【解答】解:由++=1,得a、b、c有两个是正数,一个是负数.当a>0,b>0,c<0时,=1﹣1﹣1﹣1=﹣2,当a<0,b>0,c>0时,=﹣1+1﹣1﹣1=﹣2,当a>0,b<0,c>0时,=﹣1﹣1+1﹣1=﹣2.综上所述:=﹣2.故答案为:﹣2.35.【解答】解:∵|a|=3,|b|=5且a<0,b>0,∴a=﹣3,b=5,则原式=﹣3﹣5=﹣8.故答案为:﹣8.36.【解答】解:∵a、b、c为整数,且|a﹣b|2013+