..第一篇数学课程第1章数学的特点、方法与意义第2章数学课程概述第3章国外的数学课程改革第4章国内数学课程改革第二篇数学教学理论第5章一般教学理论概述第6章数学教学模式第7章数学教学评价第三篇数学教学设计第8章数学教学原则第9章数学教学设计第10章数学知识的分类教学设计第四篇数学教学基本技能第11章备课与说课第12章数学教学的语言第13章计算机辅助数学教学附录第14章数学能力及其培养第15章中学数学思想方法第16章数学学习的基本理论..第一篇数学课程第1章数学的特点、方法与意义数学语言:如同数学的对象一样来源于人类实践,它源于人类的语言,随着数学抽象性和严谨性发展,逐步演变成独特的语言符号系统,数学语言主要有文字语言(术语)、符号语言(记号)和图像语言组成。数学方法:是以数学为工具进行科学研究和解决问题的方法,即用数学语言表达事物的状态、关系和过程,经过推理、运算和分析,以形成解释、判断和预言的方法。公理化方法:从五个公设和五条公理出发,运用演绎方法将当时所知道的几何学知识全部推导出来,并使之条理化、系统化,形成了一个合乎逻辑的体系。随机方法:随机方法又称概率统计方法,就是指人们以概率统计为工具,通过有效的收集、整理受随机因素影响的数据,从中寻找确定的本质的数量规律,并对这些随机影响以数量的刻画和分析,从而对所观察的现象和问题作出推断、预测,直至为未来的决策与行动提供依据和建议的一种方法。数学模型:那些利用数学语言来模拟现实的模型。广义地说,一切数学都是数学模型。数学的特点:(1)抽象性:①数学抽象的彻底性;②数学抽象的层次性;③数学方法的抽象性。(2)严谨性,(3)广泛的应用性。..公理化方法的作用和意义首先有利于概括整理数学知识并提高认知水平。其次促进新理论创立。再次,由于数学公理化思想表述数学理论的简捷性、条件性和结构的和谐性,从而为其他科学理论的表述起到了示范作用,其他科学纷纷效法建立自己的公理化系统。数学模型方法:是指对某种事物或现象中所包含的数量关系和空间形式进行数学概括、描述和抽象的基本方法。随机方法又称概率统计方法的特点:A概率统计方法的归纳性B处理的数据受随机因素的影响C处理的问题一般是机理不甚清楚的复杂问题D概率数据中隐藏着概率特性。第2章数学课程概述经验课程:在培养具有丰富个性的学生,它是从学生的兴趣和需要出发,以儿童的主体性活动的经验为中心组织的课程。隐性课程:学生在学习环境中所学习到的非预期的或非计划性的知识、价值观念、规范和态度,具有某种潜在性。研究性课程:为“研究性学习方式”的充分展开而提供的相对独立的、有计划的学习机会。直线式:将一门学科的知识内容按照逻辑体系组织起来,前后的内容不重复,也就是一个知识点学习完之后,不在作为新知识出现。螺旋式:在不同的学习阶段重复呈现特定的知识内容,也就是说某个知识点学完之后,有可能再次作为新知识出现.结论式:教材内容反映的是编者经过研究、整理得到的结论性知识,..没有给出得到这些结论的思考、分析、探索过程。过程式:从问题出发,通过提出问题、解决问题、给出学习新知识的背景与必要性,提供观察、尝试、操作、猜想、验证等方面的学习材料,暴露思维活动过程,总结数学活动的经验,使学生在数学化的过程中学习概念、公式、法则、性质。“人本主义”的教育目标:突出的强调个人的心智训练和发展.“实用主义”的教育目标:则强调对于实用技能的掌握.大众数学的数学课程的设置特点:(1)注重课程内容的普适性,即精选未来社会所需要的、学生所喜爱并能够接受的数学基础知识作为课程内容(2)以未来社会公民所必须的数学思想方法为主线选择和安排教学内容(3)以与学生年龄特征相适应的大众化、生活化的方式呈现数学内容(4)使学生在活动中、在现实生活中,学习数学、发展数学(5)淡化形式,重在实质。大众数学内涵:必须面向所有的学生,促进所有的学生学好数学,包括A人人学有用的数学,B人人掌握数学,C不同的学生学习不同的数学。注重数学应用的数学课程:具体表现:A增加具有广泛应用前景的数学知识;B加强传统数学知识与实际的联系;C进行实践课题的研究。数学课程体系的编排基本原则:(1)符合学生的认知规律与心理发展规律,课程体系的编排应符合下列要求:A可接受性B直观性C趣味性;D阶段性。(2)符合数学科学的基本特性,首先要尽可能的保持数学知识的系统性,由易到难、由浅入深、由古到今、纲目清晰的展..开知识内容,其次要突出数学学科的知识结构。第3章国外的数学课程改革贝利—克莱因运动1901年,英国数学家贝利提出了“数学教育应该面向大众”、“数学教育必须重视应用”的思想,以及改革数学教育的鲜明主张,于此同时,数学家莱克因也在各种场合发表自己对数学教育的看法,并提出了所谓的“米兰大纲”,法国的波利尔和美国的穆尔也纷纷提出了数学教育改革的主张,于是就形成了贝利—克莱因运动。新数学运动1950,新数学运动就已经作为美国战后数学教育计划之一悄悄地开始了主要基于下数学本身的变革和课程观念上的转变。传统的数学课程存在着明显的不足,人们开始制定新的数学课程。继美国、欧洲推进数学教育现代化后,非洲、拉丁美洲、东南亚地区都相继成立了地区性的机构,召开会议推进“新数学运动”。回到基础运动几乎是悄无声息的进行的,没有口号,没有统一的纲领,出发点是希望重新引起对基本技能的重视。问题解决:三种说法:一是作为背景的问题解决。二是作为技能的问题解决。三是作为艺术的问题解决。IEA国际教育成就评估协会;FIMS第一次国际数学研究;SIMS第二次国际数学研究;TIMSS1994—1995年开始实施的第三次国际数学与科学研究;..PISA是一项新的面向15岁学生的国际性评价。IAEP教育进步国际评价的简称;NCTM美国数学教师协会贝利—克莱因运动的基本思想:注重发展学生的函数思维能力,其主要特点如下:从运动和变化中提出数学对象;运用因果关系对数学内容作实际有效的解释;重视说明数学对象的丰富内容,即强调数学的实用观点。发展函数思维的手段之一是借助一组相同的问题,这些问题的目的是对某些明显有“函数内容的”具体对象给予数学的表达和分析。新数学运动与回到基础运动带给我们的教训:A教育不是一门纯粹独立的科学;B用口号来代替行动纲领,将毫无益处;C数学课程的改革不是一个突变的过程;D教材的编写应照顾到不同层次的学生。1990年NCTM修订《学校..》基本原则:(1)课堂教师是促进数学教育的关键(2)数学教育应当促进所有学生学习数学(3)新的教学大纲的目标的制定要让真正关心它的教师运用方便、容易取得,要让教师知道怎样从他们目前的课堂教学达到大纲的目标(4)在新的大纲中应清楚地阐述发展基本技能的观点(5)社会的支持对于大纲的修改是非常重要的(6)在大纲的基础上进行专业进修时帮助教师提高教学能力的重要一环(7)在数学教育方面,必须发展领导技能来帮助和支持教师的教学(8)只有在教学大纲、教学评价相结合的教育系统中,学生学习才能取得成功,这三者是紧密结合的。(9)改进教和学需要长时间的。..第4章国内数学课程改革新一轮数学课程改革的社会背景20世纪后半叶,计算机的普,科学技术迅猛发展,现代社会逐步实现工业时代向信息时代的转变。在这个高度信息化的时代背景下,国际竞争已跨越区域的地理界线,愈演愈烈,因为未来的国力竞争将越来越依赖于对知识信息、人才的占有程度。新的时代背景对学生的创新意识和实践能力提出了更高的要求,对未来公民的学习能力也提出了更高的要求,对公民的创新意识、实践能力、合作交流的意识与能力、终身学习的心向和能力等方面提出了新的要求。正式在这样的时代背景下,1990年以来,世界各国都调整了人才培养目标,加快了教育改革的步伐,新起了教育改革浪潮。本次教育改革力图以课程为突破口,最终实现教学改革。与国际相比,我国数学教育有哪些优势与不足?优势:我国学生学习勤奋刻苦,双基扎实。我国际同年龄段学生相比,我国学生对数学学习内容的基础知识掌握的扎实,数学的基本技能熟练,中国学生的总体平均水平比国际同龄人要高得多。不足:①教学目标方面存在问题②课程内容方面存在问题③教学方式方面的问题④教学评价方面的问题⑤课程设置方面的问题..全日制义务教育数学课程基本理念(1)明确义务教育阶段数学课程的性质(2)通过数学教学使学生了解数学的作用(3)改变学生消极被动的学习方式(4)正确发挥教师的作用(5)关于数学教学评价(6)正确发挥现代信息技术的作用普通高中课程标准的基本理念(1)高中课程的基础性:为适应现代生活与未来发展提供数学基础,获得数学素养,为进一步学习提供必要的数学准备(2)高中课程的选择性和多样性(3)提供积极主动、勇于探索的学习方式(4)提高学生的数学思维能力(5)发展学生的应用意识及联系的观念(6)正确处理好“双基”的继承与发展(7)强调理解数学的本质,注意适度的形式化(8)体现数学的人文价值(9)信息技术与课程的有机整合(10)建立合理、科学的评价体系。第二篇数学教学理论第5章一般教学理论概述教学:(1)教学及学习。(2)教学即教授。(3)教学即教学生学。(4)教学即教师的教与学生的学。教学理论一种规范性、实践性的理论,它主要关心两大问题:一是教师的教如何影响学生学的;二是怎样教才是有效的。现代教学论:又称思维教学论,其主流思想方式着眼于学习方法的掌握与创新精神的发挥,其理论基础是主体教育论属于以学为本的研究。..传统教学论:文艺复兴以后,针对中世纪神学思想的束缚,培根喊出“知识就是力量”的口号,以近代教学思想为支撑的教学理论,一般称为传统教学论。现代教学论三大流派以前苏联赞可夫为代表的教学与发展实验派、以美国布鲁纳为代表的结构主义或结构课程派、以德国瓦根舍因和克拉夫斯基为代表的范例教学派。教学发生的必要条件:其一是引起学生的学习意向;其二是用易于学生觉知的方式暗示或明释学习的内同容。具体来说又可以被分解为三方面(1)它们必须与引起学习的意图相联系(2)它们必须说明或展示学习的内容(3)它们必须用易于学生理解并适于学习者能力的方式来进行。《学记》中的教学思想:《学记》是世界教育史上最早论述教学的专著,教学作为一门科学的系统地理论,其基础是捷克教育学夸美纽斯《大教学论》奠定的,真正使教学成为一门独立的学科,那是德国教育家赫尔巴特的功劳,他的《普通教育学》确立了以实践哲学和心理学为理论基础的教学理论。夸美纽斯的教学思想:进一步发展拉特克的观点,把培根的认识论和方法论应用于教育,提出人的发展和自然界的动植物一样,教育要适应这种自然,自然适应论原则是教学的方法论原则,孕育了“教与学对应”思想,在这一原则指导下,建立学年制和班级授课制是一种最适宜的做法。杜威的思维教学论是现代教学论的生长点,他提出来“在做中学”的..思想。第6章数学教学模式教学模式的含义:在一定的教学思想、教学理论、学习理论的指导下,在大量的教学实验的基础上,为完成特定教学目标和内容而围绕某个主题形成的稳定、简明的教学结构理论框架及其具体操作的实践活动方式。它是教学思想、教学理论、学习理论的集中体现。认知发展:强调学生能够认知发展的教学模式主要有奥苏伯尔的有意义接受教学模式和卢布姆的掌握教学模式两种。探究发现:强调探究发现的教学模式主要有布鲁纳的发现教学模式、萨奇曼的探究训练教学模式和兰本达的“探究-研讨”教学模式。启发讨论模式:适用于教师诱导全班学生发现预定目标的情形。教师不再是提供知识答案的唯一来源,而是启发学生思维促进学生讨论的组织者。学生不再是教师讲什么记什么,而是在平等的讨论中主动建构对意义的理解。问题解决模式旨在培养学生提出问题与解决问题的能力的数学教学模式。讲授教学模式讲授教学模式的基本操作过程有五个环节:组织教学——引入新课——讲授新课——巩固练习——小结、布置作业;这种教学模式的特点是,教师在教学过程中占据主导地位,控制着教学的进程。讲授模式适用概念性强、综合性强,或者比较陌生的课题,能在..较短的时间内讲解较多的知识。启发讨论模式:适用于教师诱导全班学生发现预定目标的情形。教师不再是提供知识答案的唯一