初升高经典数学教材

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实用文档标准文案初高中数学衔接教材第一部分,如何做好高、初中数学的衔接●第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。一高中数学与初中数学特点的变化1数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。2思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。例如:高一《代数》第一章就有基本概念52个,数学符号28个;《立体几何》第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,实用文档标准文案当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。初中数学与高中数学衔接紧密的知识点1绝对值:⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)aaaaaa⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:||(0)xaaaxa;||(0)xaaxa或xa2乘法公式:⑴平方差公式:22()()ababab⑵立方差公式:3322()()ababaabb⑶立方和公式:3322()()ababaabb⑷完全平方公式:222()2abaabb,2222()222abcabcabacbc⑸完全立方公式:33223()33abaababb3分解因式:⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。⑵方法:①提公因式法,②运用公式法,③分组分解法,④十字相乘法。4一元一次方程:⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。实用文档标准文案⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。⑶关于方程axb解的讨论①当0a时,方程有唯一解bxa;②当0a,0b时,方程无解③当0a,0b时,方程有无数解;此时任一实数都是方程的解。5二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:①代入消元法,②加减消元法。6不等式与不等式组(1)不等式:①用符不等号(、≠、)连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。(4)一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。7一元二次方程:20(0)axbxca①方程有两个实数根240bac②方程有两根同号1200cxxa实用文档标准文案③方程有两根异号1200cxxa④韦达定理及应用:1212,bcxxxxaa222121212()2xxxxxx,221212124()4bacxxxxxxaa3322212121122121212()()()()3xxxxxxxxxxxxxx8函数(1)变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:①若两个变量y,x间的关系式可以表示成ykxb(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。(3)一次函数的图象及性质①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k0,bO,则经2、3、4象限;当k0,b0时,则经1、2、4象限;当k0,b0时,则经1、3、4象限;当k0,b0时,则经1、2、3象限。④当k0时,y的值随x值的增大而增大,当k0时,y的值随x值的增大而减少。(4)二次函数:①一般式:2224()24bacbyaxbxcaxaa(0a),对称轴是,2bxa顶点是24,)24bacbaa(-;实用文档标准文案②顶点式:2()yaxmk(0a),对称轴是,xm顶点是,mk;③交点式:12()()yaxxxx(0a),其中(1,0x),(2,0x)是抛物线与x轴的交点(5)二次函数的性质①函数2(0)yaxbxca的图象关于直线2bxa对称。②0a时,在对称轴(2bxa)左侧,y值随x值的增大而减少;在对称轴(2bxa)右侧;y的值随x值的增大而增大。当2bxa时,y取得最小值244acba③0a时,在对称轴(2bxa)左侧,y值随x值的增大而增大;在对称轴(2bxa)右侧;y的值随x值的增大而减少。当2bxa时,y取得最大值244acba9图形的对称(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴与y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。(2)平面直角坐标系内的对称点:设11(,)Mxy,22(,)Mxy是直角坐标系内的两点,①若M和'M关于y轴对称,则有1212xxyy。②若M和'M关于x轴对称,则有1212xxyy。实用文档标准文案③若M和'M关于原点对称,则有1212xxyy。④若M和'M关于直线yx对称,则有1212xyyx。⑤若M和'M关于直线xa对称,则有12122xaxyy或21122xaxyy。11统计与概率:(1)科学记数法:一个大于10的数可以表示成10NA的形式,其中A大于等于1小于10,N是正整数。(2)扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。(3)各类统计图的优劣:①条形统计图:能清楚表示出每个项目的具体数目;②折线统计图:能清楚反映事物的变化情况;③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(5)平均数:对于N个数12,,,Nxxx,我们把1N(12Nxxx)叫做这个N个数的算术平均数,记为x。(6)加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。(7)中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣比较:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(8)调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。(9)频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值实用文档标准文案为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(10)数据的波动:①极差是指一组数据中最大数据与最小数据的差。②方差是各个数据与平均数之差的平方和的平均数。③标准差就是方差的算术平方根。④一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(11)事件的可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功