人教版数学七年级下学期期末测试卷学校________班级________姓名________成绩________一、选择题1.下列各数:-2,0,13,0.020020002…,,9,其中无理数的个数是()A.4B.3C.2D.12.若a<b,则下列结论不一定成立的是()A.11abB.22abC.33abD.22ab3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.下列无理数中,与4最接近的是()A.11B.13C.17D.196.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市7.如图,在数轴上,已知点A,B分别表示数1,23x,那么数轴上表示数2x的点应落在()A.点A的左边B.线段AB上C.点B的右边D.数轴的任意位置8.下列说法:①在同一平面内,过一点能作已知直线的一条垂线;②在同一平面内,过一点有且只有一条直线与已知直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④两条直线被第三条直线所截,内错角相等.其中正确说法的个数是()A.1B.2C.3D.49.若关于x,y的方程组24232xyxym的解满足32xy,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.010.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1个单位长度.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An,则△OA2A2019的面积是()A.504B.10092C.1008D.1009二、填空题11.若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy,则a=_____.12.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.13.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.14.若|3x﹣2y﹣1|+2xy=0,则x﹣y=_____.15.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3cm,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.16.方程4x+3y=20的所有非负整数解为_____________________.17.如图,ABCD∥,60BED,ABE的平分线与CDE的平分线交于点F,则DFB的度数是________.18.某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.三、解答题19.计算:3272211612.20.解不等式组513(1)131722xxxx,并把它的解集在数轴上表示出来.21.如图,已知ABCD∥,180BCF,BD平分ABC,CE平分DCF,90ACE.求证:ACBD.22.列方程组解应用题5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?23.如图,在边长为1个单位长度的小正方形组成的网格中,格点三角形ABC(顶点为网格线的交点)的顶点A,C的坐标分别为(2,4),(4,3).(1)请在网格图中建立平面直角坐标系;(2)将ABC先向左平移5个单位长度,再向下平移6个单位长度,请画出两次平移后的111ABC△,并直接写出点B的对应点1B的坐标;(3)若,Pab是ABC内一点,直接写出111ABC△中的对应点1P的坐标.24.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列问题:(1)填空:样本容量为________,a________;(2)把频数分布直方图补充完整;(3)求扇形B的圆心角度数;(4)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.26.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?答案与解析一、选择题1.下列各数:-2,0,13,0.020020002…,,9,其中无理数的个数是()A.4B.3C.2D.1【答案】C【解析】分析:根据无理数与有理数的概念进行判断即可得.详解:2是有理数,0是有理数,13是有理数,0.020020002…是无理数,是无理数,9是有理数,所以无理数有2个,故选C.点睛:本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,如2,35等;③虽有规律但是无限不循环的数,如0.1010010001…,等.2.若a<b,则下列结论不一定成立的是()A.11abB.22abC.33abD.22ab【答案】D【解析】【分析】由不等式的性质进行计算并作出正确的判断.【详解】A.在不等式ab的两边同时减去1,不等式仍成立,即a−1b−1,故本选项错误;B.在不等式ab的两边同时乘以2,不等式仍成立,即2a2b,故本选项错误;C.在不等式ab的两边同时乘以13,不等号的方向改变,即33ab,故本选项错误;D.当a=−5,b=1时,不等式a2b2不成立,故本选项正确;故选D.【点睛】本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.4.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5.下列无理数中,与4最接近的是()A.11B.13C.17D.19【答案】C【解析】分析:根据无理数的定义进行估算解答即可.详解:4=16,与16最接近的数为17,故选:C.点睛:本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.6.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.7.如图,在数轴上,已知点A,B分别表示数1,23x,那么数轴上表示数2x的点应落在()A.点A的左边B.线段AB上C.点B的右边D.数轴的任意位置【答案】B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【详解】解:由数轴上的点表示的数右边的总比左边的大,得:-2x+3>1,解得x<1;-x>-1.-x+2>-1+2,解得-x+2>1.所以数轴上表示数-x+2的点在A点的右边;作差,得:-2x+3-(-x+2)=-x+1,由x<1,得:-x>-1,-x+1>0,-2x+3-(-x+2)>0,∴-2x+3>-x+2,所以数轴上表示数-x+2的点在B点的左边,点A的右边.故选B.【点睛】本题考查了一元一次不等式,解题的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式.8.下列说法:①在同一平面内,过一点能作已知直线的一条垂线;②在同一平面内,过一点有且只有一条直线与已知直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④两条直线被第三条直线所截,内错角相等.其中正确说法的个数是()A.1B.2C.3D.4【答案】B【解析】【分析】根据平行公理的推论、点到直线的距离定义、垂线的性质,即可解答.【详解】解:①平面内,过一点能且只能作一条直线与已知直线垂直,说法正确;②过直线外一点有且只有一条直线与这条直线平行,原说法中没有指明在已知直线外,说法错误;③直线外一点与直线上各点连接的所有线段中,垂线段最短,说法正确;④两条平行的直线被第三条直线所截,内错角相等.故说法错误,正确的有2个,故选B.【点睛】本题考查了对平行公理及推论,垂线,点到直线的距离等知识点的应用,关键是能根据定理和性质进行判断.9.若关于x,y的方程组24232xyxym的解满足3