Operator splitting methods for pricing American op

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ReportsoftheDepartmentofMathematicalInformationTechnologySeriesB.Scienti£cComputingNo.B11/2004OperatorSplittingMethodsforPricingAmericanOptionswithStochasticVolatilitySamuliIkonenJariToivanenUniversityofJyv¨askyl¨aDepartmentofMathematicalInformationTechnologyP.O.Box35(Agora)FIN–40014UniversityofJyv¨askyl¨aFINLANDfax+358142602731£/Copyrightc°2004SamuliIkonenandJariToivanenandUniversityofJyv¨askyl¨aISBN951­39­1980­3ISSN1456­436XOperatorSplittingMethodsforPricingAmericanOptionswithStochasticVolatilitySamuliIkonen¤JariToivanen¤AbstractStochasticvolatilitymodelsleadtomorerealisticoptionpricesthantheBlack-Scholesmodelwhichusesaconstantvolatility.Basedonsuchmodelsatwo-dimensionalparabolicpartialdi®erentialequationcanderivedforoptionprices.DuetotheearlyexercisepossibilityofAmericanoptioncontractsthearisingpricingproblemsarefreeboundaryproblems.InthispaperweconsiderthenumericalpricingofAmericanoptionswhenthevolatilityfollowsastochasticprocess.Weproposeoperatorsplittingmethodsforperformingtimesteppingaftera¯nitedi®erencespacediscretizationisdone.Theideaistodecouplethetreat-mentoftheearlyexerciseconstraintandthesolutionofthesystemoflinearequationsintoseparatefractionaltimesteps.Withthisapproachwecanuseanye±cientnumericalmethodtosolvethesystemoflinearequationsinthe¯rstfractionalstepbeforemakingasimpleupdatetosatisfytheearlyexerciseconstraint.OuranalysissuggeststhattheCrank-Nicolsonmethodandtheop-eratorsplittingmethodbasedonithavethesameasymptoticorderofaccuracy.Thenumericalexperimentsshowthattheoperatorsplittingdoesnotincreaseessentiallytheerror.Theyalsodemonstratethee±ciencyoftheoperatorsplit-tingmethodswhenamultigridmethodisusedforsolvingthesystemsoflinearequations.Keywords:Americanoptionpricing,stochasticvolatilitymodel,operatorsplit-tingmethod,timediscretization,multigridmethod,linearcomplementarityprob-lem1IntroductionTheoptionpricesobtainedusingtheBlack-Scholesmodel[2]withaconstantvolatilityarenotconsistentwithobservedoptionprices.Onepossibleremedyistomakethevolatilitytobeafunctionoftimeandstrikeprice.Bycalibratingthisfunctionconsis-tentoptionpricescanbeobtained.Anotherapproachistoassumethatthevolatilityofthepriceprocessisalsostochastic.Suchmodelshavebeenconsideredforexample¤DepartmentofMathematicalInformationTechnology,POBOX35(Agora),FIN-40014UniversityofJyvÄaskylÄa,Finland,Samuli.Ikonen@mit.jyu.fi,Jari.Toivanen@mit.jyu.fi1in[1],[13],[17],[18].Inthispaper,wewillusethestochasticvolatilitymodelintro-ducedbyHestonforpricingAmericanoptions[17].Thismodelseemstobeconsistentwithmarketprices.Forexample,Dr¸agulescuandYakovenkoshowedthatthetime-dependentprobabilitydistributionofstockpricechangesgeneratedbyHeston'smodelisingoodagreementwiththeDow-Jonesindexafterthecalibrationoftheparametersappearinginthemodel[10].ThepriceofEuropeanoptionscanbecalculatedusinganalyticalexpressionsforHeston'smodel[17].TheearlyexercisepossibilityofAmericanoptionsleadstonon-linearfreeboundaryproblemsdescribedbypartialdi®erentialinequalitieswhicharealsocalledindi®erentdisciplinesasvariationalinequalities,linearcomplementar-ityproblemsandobstacleproblems.NousefulanalyticalmethodsareavailableforpricingAmericanoptionsand,thus,numericalmethodsareusedtoapproximatetheprices.AlreadyBrennanandSchwartzproposeda¯nitedi®erencediscretizationfortheone-dimensionalBlack-ScholesequationandthenadirectsolutionmethodforpricingAmericanoptions[4].Heston'smodelhasanadditionalspacevariablerelatedtothevolatility.Innumericalapproximationsitisusuallychosentobethevarianceofthepriceprocess,whichisthesquareofthevolatility.Thisadditionalvariablemakesthediscretizationandsolutionproceduresmorecomplicatedaswellascomputationallymoreexpensive.Inthefollowingwereviewthreepapersandonereportwhichhaveconsideredsuchoptionpricingproblems.ClarkeandParrottconsideredthediscretizationofapartialdi®erentialinequalityforthepriceofanAmericanoptionusing¯nitedi®erencesforspacederivativesandaslightlystabilizedCrank-Nicolsonmethodforthetimederivative[7],[8].Theyper-formedacoordinatetransformationtoincreasetheaccuracyofthespacediscretizationwithuniformgridstepsizes.Theyproposedaspecialversionofaprojectedfullap-proximationscheme(PFAS)multigrid[3]forthesolvingarisinglinearcomplementarityproblems.TheirmethodusesaspecialprojectedlineGauss-Seidelsmootherwhichinpartmadetheconsideredmethodrathercomplicatedandproblemspeci¯c.Thead-vantageofsuchamultilevelmethodisthatthenumberofiterationsrequiredtosolvealinearcomplementarityproblemisessentiallyindependentofthegridstepsizeand,thus,thecomputationalcostofthisiterativesolutionisofoptimalorder.Zvan,Forsyth,andVetzaldiscretizedthepartialdi®erentialinequalityusing¯niteelement/volumemethodtogetherwithanonlinear°uxlimiterforconvectionterms[28].Theyformulatedlinearcomplementarityproblemsusingnonlinearpenaltyterms.ThesolutionsofthearisingnonlinearproblemswereobtainedwithaninexactNew-tonmethodandthelinearproblemswithapproximateJacobiansweresolvedwithanincompleteLUpreconditionedCGSTABmethod.ThemethodproposedbyZvan,ForsythandVetzalissimplerthantheonebyCl

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功