图3GFBCADLE动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想一、单动点问题小菜一碟:如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为例(10年房山二模压轴)25.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.图2图1GFHDHGFDABBACECE1.(2009临沂25)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AMEECF△≌△,所以AEEF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB上取一点M,使AMEC,连接ME.BMBE.45BME°,135AME°.CF是外角平分线,45DCF°,135ECF°.AMEECF.90AEBBAE°,90AEBCEF°,BAECEF.AMEBCF△≌△(ASA).AEEF.(2)正确.证明:在BA的延长线上取一点N.使ANCE,连接NE.BNBE.45NPCE°.四边形ABCD是正方形,ADBE∥.DAEBEA.NAECEF.ANEECF△≌△(ASA).AEEF.2.(2009年江西中考题25)如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1图2图3ADFCGEB图1ADFCGEB图3ADFCGEB图2ADFCGEBMADFCGEBN思路点拨1.先解读这个题目的背景图,等腰梯形ABCD的中位线EF=4,这是x的变化范围.平行线间的距离处处相等,AD与EF、EF与BC间的距离相等.2.当点N在线段AD上时,△PMN中PM和MN的长保持不变是显然的,求证PN的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E作EG⊥BC于G.在Rt△BEG中,221ABBE,∠B=60°,所以160cosBEBG,360sinBEEG.所以点E到BC的距离为3.(2)因为AD//EF//BC,E是AB的中点,所以F是DC的中点.因此EF是梯形ABCD的中位线,EF=4.①如图4,当点N在线段AD上时,△PMN的形状不是否发生改变.过点N作NH⊥EF于H,设PH与NM交于点Q.在矩形EGMP中,EP=GM=x,PM=EG=3.在平行四边形BMQE中,BM=EQ=1+x.所以BG=PQ=1.因为PM与NH平行且相等,所以PH与NM互相平分,PH=2PQ=2.在Rt△PNH中,NH=3,PH=2,所以PN=7.在平行四边形ABMN中,MN=AB=4.因此△PMN的周长为3+7+4.图4图5②当点N在线段DC上时,△CMN恒为等边三角形.如图5,当PM=PN时,△PMC与△PNC关于直线PC对称,点P在∠DCB的平分线上.在Rt△PCM中,PM=3,∠PCM=30°,所以MC=3.此时M、P分别为BC、EF的中点,x=2.如图6,当MP=MN时,MP=MN=MC=3,x=GM=GC-MC=5-3.如图7,当NP=NM时,∠NMP=∠NPM=30°,所以∠PNM=120°.又因为∠FNM=120°,所以P与F重合.此时x=4.综上所述,当x=2或4或5-3时,△PMN为等腰三角形.图6图7图8考点伸展第(2)②题求等腰三角形PMN可以这样解:如图8,以B为原点,直线BC为x轴建立坐标系,设点M的坐标为(m,0),那么点P的坐标为(m,3),MN=MC=6-m,点N的坐标为(26m,2)6(3m).由两点间的距离公式,得21922mmPN.当PM=PN时,92192mm,解得3m或6m.此时2x.当MP=MN时,36m,解得36m,此时35x.当NP=NM时,22)6(219mmm,解得5m,此时4x.二、双动点问题例:如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。当t=时,四边形是平行四边形;6当t=时,四边形是等腰梯形.81、(2012贵州遵义12分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.2、如图,已知ABC△中,10ABAC厘米,8BC厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?解:(1)①∵1t秒,∴313BPCQ厘米,∵10AB厘米,点D为AB的中点,∴5BD厘米.又∵8PCBCBPBC,厘米,∴835PC厘米,∴PCBD.又∵ABAC,∴BC,∴BPDCQP△≌△.②∵PQvv,∴BPCQ,又∵BPDCQP△≌△,BC,则45BPPCCQBD,,∴点P,点Q运动的时间433BPt秒,∴515443QCQvt厘米/秒。AQCDBP(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104xx,解得803x秒.∴点P共运动了803803厘米.∵8022824,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.三、线动问题例:如图,在RtABC△中,9060ACBB°,°,2BC.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CEAB∥交直线l于点E,设直线l的旋转角为.(1)①当度时,四边形EDBC是等腰梯形,此时AD的长为;②当度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED.∵CE//AB,∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=23.∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2.∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;OECBDAlOCBA(备用图)CBAED图1NMABCDEMN图2ACBEDNM图3(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90°∴∠BCE+∠ACD=90°∴∠CAD=∠BCE∵AC=BC∴△ADC≌△CEB②∵△ADC≌△CEB∴CE=AD,CD=BE∴DE=CE+CD=AD+BE(2)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE又∵AC=BC∴△ACD≌△CBE∴CE=AD,CD=BE∴DE=CE-CD=AD-BE(3)当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.