高考文科数学向量专题讲解及高考真题精选(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

向量1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法AB;字母表示:a;坐标表示法a=xi+yj=(x,y).(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=O|a|=O.单位向量aO为单位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)2121yyxx(6)相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量.2..向量的运算运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则2.三角形法则1212(,)abxxyyabba()()abcabcACBCAB向量的减法三角形法则1212(,)abxxyy()ababABBA,ABOAOB数乘向量1.a是一个向量,满足:||||||aa2.0时,aa与同向;0时,aa与异向;=0时,0a.(,)axy()()aa()aaa()abab//abab向量的数量积ab是一个数1.00ab或时,0ab.2.00||||cos(,)abababab且时,1212abxxyyabba()()()ababab()abcacbc2222||||=aaaxy即||||||abab3.向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:ababab.⑷运算性质:①交换律:abba;②结合律:abcabc;③00aaa.⑸坐标运算:设11,axy,22,bxy,则1212,abxxyy.4.向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设11,axy,22,bxy,则1212,abxxyy.设、两点的坐标分别为11,xy,22,xy,则1212,xxyy.5.向量数乘运算:⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a.①aa;②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,0a.⑵运算律:①aa;②aaa;③abab.⑶坐标运算:设,axy,则,,axyxy.6.向量共线定理:向量0aa与b共线,当且仅当有唯一一个实数,使ba.设11,axy,22,bxy,其中0b,则当且仅当12210xyxy时,向量a、0bb共线.7.平面向量基本定理:如果1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使1122aee.(不共线的向量1e、2e作为这一平面内所有向量的一组基底)8.分点坐标公式:设点是线段12上的一点,1、2的坐标分别是11,xy,22,xy,当12时,点的坐标是1212,11xxyy.(当时,就为中点公式。)19.平面向量的数量积:⑴cos0,0,0180ababab.零向量与任一向量的数量积为0.baCabCC⑵性质:设a和b都是非零向量,则①0abab.②当a与b同向时,abab;当a与b反向时,abab;22aaaa或aaa.③abab.⑶运算律:①abba;②ababab;③abcacbc.⑷坐标运算:设两个非零向量11,axy,22,bxy,则1212abxxyy.若,axy,则222axy,或22axy.设11,axy,22,bxy,则12120abxxyy.设a、b都是非零向量,11,axy,22,bxy,是a与b的夹角,则121222221122cosxxyyababxyxy.⑤线段的定比分点公式:(0和1)设P1P=PP2(或P2P=1P1P),且21,,PPP的坐标分别是),(),,(,,2211yxyxyx)(,则121211yyyxxx推广1:当1时,得线段21PP的中点公式:121222yyyxxx推广2:MBAM则1PBPAPM(对应终点向量).三角形重心坐标公式:△ABC的顶点332211,,,,,yxCyxByxA,重心坐标yxG,:12312333xxxxyyyy注意:在△ABC中,若0为重心,则0OCOBOA,这是充要条件.⑥平移公式:若点Pyx,按向量a=kh,平移到P‘'',yx,则kyyhxx''4.(1)正弦定理:设△ABC的三边为a、b、c,所对的角为A、B、C,则RCcBbAa2sinsinsin.(2)余弦定理:CababcBaccabAbccbacos2cos2cos2222222222(3)正切定理:2tan2tanBABAbaba(4)三角形面积计算公式:设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.ABPM①S△=1/2aha=1/2bhb=1/2chc②S△=Pr③S△=abc/4R④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA⑤S△=cPbPaPP[海伦公式]⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图:图1中的I为S△ABC的内心,S△=Pr,图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra图1图2图3图4附:三角形的五个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.(5)已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c[注:s为△ABC的半周长,即2cba],则:①AE=as=1/2(b+c-a)②BN=bs=1/2(a+c-b)③FC=cs=1/2(a+b-c)综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4).特例:已知在Rt△ABC,c为斜边,则内切圆半径r=cbaabcba2(如图3).(6)在△ABC中,有下列等式成立CBACBAtantantantantantan.证明:因为,CBA所以CBAtantan,所以CBABAtantantan1tantan,结论!(7)在△ABC中,D是BC上任意一点,则DCBDBCBCABBDACAD222.证明:在△ABCD中,由余弦定理,有BBDABBDABADcos2222①ABCOabcIABCDEFIABCDEFrararabcaabcACBNEFDACB图5在△ABC中,由余弦定理有BCABACBCABB2cos222②,②代入①,化简可得,DCBDBCBCABBDACAD222(斯德瓦定理)①若AD是BC上的中线,2222221acbma;②若AD是∠A的平分线,appbccbta2,其中p为半周长;③若AD是BC上的高,cpbpappaha2,其中p为半周长.(8)△ABC的判定:222bac△ABC为直角△∠A+∠B=22c<22ba△ABC为钝角△∠A+∠B<22c>22ba△ABC为锐角△∠A+∠B>2附:证明:abcbaC2cos222,得在钝角△ABC中,222222,00coscbacbaC(9)平行四边形对角线定理:对角线的平方和等于四边的平方和.)(22222bababa09-13高考真题09.7.函数2)62cos(xy的图像F按向量a平移到F/,F/的解析式y=f(x),当y=f(x)为奇函数时,向量a可以等于A.(,2)6B.(,2)6C.(,2)6D.(,2)6【答案】D09.1.若向量a=(1,1),b=(-1,1),c=(4,2),则c=A.3a+bB.3a-bC.-a+3bD.a+3b【答案】B10.8.已知ABC和点M满足0MAMBMC.若存在实m使得AMACmAM成立,则m=BA.2B.3C.4D.511.2.若向量)2,1(a,)1,1(b,则ba2与ba的夹角等于A.4B.6C.4D.43【详细解析】分别求出2ab与ab的坐标,再求出a,b,带入公式求夹角。【考点定位】考查向量的夹角公式cosθ=abab,属于简单题.12.13.已知向量1,0,1,1ab,则(1)与2ab同向的单位向量的坐标表示为___31010(,)1010;(2)向量3ba与向量a夹角的余弦值为____255

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功