原子物理学-答案-高教第四版-杨福家

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1原子物理习题库及解答第一章原子的位形1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:eevmvMvMvMmvMv222212121222eevMmvvvMmvvevmpeep=mvp=mv,其大小:(1)222(')(')(')emvvvvvvvM近似认为:(');'pMvvvv22emvvvM有212eppMmv亦即:(2)(1)2/(2)得22422210eemvmpMmvMp亦即:()ptgradp-4~101-2)解:①22abctgE228e;库仑散射因子:a=4)2)(4(420202EZeEZea22279()()1.44()45.545eZafmMevfmEMev当901时,ctg2122.752bafm亦即:1522.7510bm②解:金的原子量为197A;密度:731.8910/gm2依公式,λ射粒子被散射到θ方向,d立体角的内的几率:ntdadP2sin16)(42(1)式中,n为原子核数密度,()AAmnnN即:AVnA(2)由(1)式得:在90º→180º范围内找到粒子得几率为:)(P18022490ant2sin()164sin2dant将所有数据代入得)(P5()9.410这就是粒子被散射到大于90º范围的粒子数占全部粒子数得百分比。1-3)解:74.5;79;,3;EMevZLiZ对于全核对于金74.5;79;,3;EMevZLiZ对于全核对于)2)(4(420202EZeEZearm当Z=79时2791.4450.564.5mrfmMevfmMev当Z=3时,1.92;mrfm但此时M并不远大于m,clmEE21,(1)2ccMmEuvEaaMmM4(1)3.027mcraafm31-4)解:①fmEZeEZerm7)2)(4(420202将Z=79代入解得:E=16.25Mev②对于铝,Z=13,代入上公式解得:2e134fm=()4EE=4.68Mev以上结果是假定原子核不动时得到的,因此可视为理论系的结果,转换到实验室中有:(1)lcmEEM对于①1(1)16.33197lcEEMev②1(1)4.927lcEEMev可见,当Mm时,lcEE,否则,lcEE1-5)解:在θ方向dΩ立方角内找到电子的几率为:221241()44sin2ZZedNdntNE注意到:;AANAnttnttNA24()4sin2ANdNadtnNA21279()1.44113.7641.0ZZeafmMevfmEMev2221.51.51010sdr424()4sin2ANdNadtnNA2313232646.0210114101.5101.510()8.9101974sin302152410114102313232646.0210114101.5101.510()8.9101974sin301-6)解:223cos2()()444sin4sin22adadNNntNntd散射角大于θ得粒子数为:180'NdN依题意得:1803606018090390sin2sin321sin2sin2dNNd,即为所求1-7)解21016104242sin2cos42sin2cos42sin2cos241)180(02323022180321803218032221201800000000000ctgNAactgaANdaANdaAtNdEeZZntNdNPAmAmAmA依题:srbsrmtgaddc/24/102430sin101002.610241041812sin14)(228040223234251-8)解:在实验室系中,截面与偏角的关系为(见课本29页)111max2221211221sin()9011sin0(1sin)1sin0LLLLmmmmmmmmmmmm--①由上面的表达式可见:为了使()LL存在,必须:2121(sin)0Lmm即:11221sin(1sin)0LLmmmm()-亦即:12121sin01sin0LLmmmm-或12121sin01sin0LLmmmm-考虑到:180Lsin0L第二组方程无解第一组方程的解为:121sin1Lmm可是,12sinLmm的最大值为1,即:12sinLmm②1m为α粒子,2m为静止的He核,则121mm,max()90L1-9)解:根据1-7)的计算,靶核将入射粒子散射到大于的散射几率是624)(22ctgantP当靶中含有两种不同的原子时,则散射几率为120.70.3将数据代入得:1323223122223113.142(11.4410)1.5106.02210154(1.0)7949(0.700.30)5.810197108MevcmgcmmolctgMevgmolgmol1-10)解:①金核的质量远大于质子质量,所以,忽略金核的反冲,入射粒子被靶核散时则:之间得几率可用的几率可用下式求出:22442sin2sin()()44sinsin22atantA2121791.4494.841.2RZZeMevfmafmEMev由于12,可近似地将散射角视为:1259616022;61590.0349180rad将各量代入得:2413234419.321.51094.8102sin600.03496.02101.51101974sin30单位时间内入射的粒子数为:910195.01013.125101.6010QItNee(个)T时间内入射质子被散时到5961之间得数目为:710493.125101.51106051.410NNT(个)②入射粒子被散时大于θ的几率为:222231.88104242AatantctgNctgA103103.125101.88106051.810NNT(个)③大于10的几率为:222108.171042antctg大于10的原子数为:10211'3.125108.17106057.6610N(个)小于10的原子数为:10123.125101605'8.610NN(个)注意:大于0的几率:1大于0的原子数为:103.12510605NT第二章原子的量子态:波尔模型2-1)解:khvEW①00,1.9kEhve有Wh0HzseVeVhW14150106.4101357.49.1nmeVeVnmWhcc6.6529.11024.1300②nmhceVeVnmWEhcck7.364)9.15.1(1024.1382-2)解:22111;;()nnnVncZravZZEEZnnn①对于H:2111210.53;42.12ranaAraA2111210.53;42.12ranaAraA616112112.1910();1.110()2vcmsvvms对于He+:Z=2112161611110.265;21.06224.3810();2.1910()raAraAvcmsvcms对于Li+:Z=31121616111140.177;0.70733336.5710();3.2910()2raAraAvcmsvcms②结合能=21()nAZEEEn13.6;413.654.4;122.4HHeLiEevEevEev③由基态到第一激发态所需的激发能:22221111113()()(1)2144ZZEEEZEEZ对于H:31312.410()(13.6)10.2;1216410.2HHhcevEevAAEeveVeVEhcHe2.10104.12313()13.6440.8;303.94HHehcEevAE31312.410()(13.6)10.2;1216410.2HHhcevEevAAEev对于He+:13()13.6440.8;303.94HHehcEevAE9.303EhcHe13()13.6440.8;303.94HHehcEevAE对于Li++:13()13.6991.8;135.14HLihcEevAE1.135EhcHe13()13.6440.8;303.94HHehcEevAE2-3)解:所谓非弹性碰撞,即把Li++打到某一激发态,而Li++最小得激发能为eVEEEELi8.91)323(222112129这就是碰撞电子应具有的最小动能。2-4)解:方法一:欲使基态氢原子发射光子,至少应使氢原子以基态激发到第一激发态122110.2EEEevV根据第一章的推导,入射粒子m与靶M组成系统的实验室系能量EL与EC之间的关系为:cLMEEMm所求质子的动能为:212121(1)220.42kcMmmEmvEEEevMMV所求质子的速度为:)(1026.610673.1106.14.2022142719smmEvk方法二:质子与基态氢原子碰撞过程动量守恒,则vmmvmHPP1010vmmmvHPP1021022102121)(2121EmmmvmvmmvmEHPHPHPPeVEEEvmEP4.20)(22211221010)/(1026.62421010smccmEvPMeVcmP9382其中2-7)解:~22211()vRZmn,巴而末系和赖曼系分别是:2222222111~3121~RZRZLB220222222111113614();();133.7231253LvRZvRZnmRZRZ10288(133.7),215RZnmZHE解得:即:原子的离子He288(133.7),215RZnmZHE解得:即:原子的离子。2-8)解:213(1)4340.844hcEhvhcvhcRZRhcRhcevV此能量电离H原子之后的剩余能量为:'40.813.627.2EevV即:28612612'54.4'3103.110()20.5110EmvEvcmsmc

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功