一、二次函数的定义1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数.2.定义要点:(1)关于x的代数式一定是整式,a,b,c为常数,且a≠0.(2)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.如:y=-x2,y=2x2-4x+3,y=100-5x2,y=-2x2+5x-3等等都是二次函数。._______)21(1122kxkykk则是二次函数,、函数例2120212kkk①②由①,得:由②,得:21k1,2121kk1k∴解:根据题意,得-1抛物线开口方向顶点坐标对称轴最值a0a0增减性a0a02axycaxy2cbxaxy2abacabxay44)2(22二、二次函数的图象及性质当a0时开口向上,并向上无限延伸;当a0时开口向下,并向下无限延伸.(0,0)(0,c)(h,0)(h,k))44,2(2abacababx2直线y轴在对称轴左侧,y随x的增大而减小在对称轴右侧,y随x的增大而增大在对称轴左侧,y随x的增大而增大在对称轴右侧,y随x的增大而减小xyxy00minyx时,00maxyx时cyxmin0时,cyxmax0时abacyabx4422min时,abacyabx4422max时,y轴2)(hxaykhxay2)(直线x=h直线x=hx=h时ymin=0x=h时ymax=0x=h时ymin=kx=h时ymax=k例2、函数的开口方向,顶点坐标是,对称轴是.32212xxy解:32,1,21cba开口向上,0a612141322144412121222abacab, 又∴顶点坐标为:)61,1(对称轴是:1x直线向上)61,1(1x直线如图,两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛物线可以用y=0.0225x²+0.9x+10表示,而且左右两条抛物线关手y轴对称.⑴钢缆的最低点到桥面的距离是少?⑵两条钢缆最低点之间的距离是多少?⑶你是怎样计算的?与同伴交流.函数y=ax2+bx+c(a≠0)的应用y/mx/m桥面-50510109.00225.02xxy10x9.0x0225.0y2⑴.钢缆的最低点到桥面的距离是少?你是怎样计算的?与同伴交流.可以将函数y=0.0225x2+0.9x+10配方,求得顶点坐标,从而获得钢缆的最低点到桥面的距离;94000x40x0225.02940002020x40x0225.0222940020x0225.02.120x0225.02.1,20是这条抛物线的顶点坐标.m1桥面的距离是由此可知桥面最低点到y/mx/m桥面-50510109.00225.02xxy⑵两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴交流.想一想,你知道图中右面钢缆的表达式是什么吗?10x9.0x0225.0y2.120x0225.02:右边的钢缆的表达式为.120x0225.0y2.1,20:,其顶点坐标为因此.m402020距离为两条钢缆最低点之间的,y轴对称且左右两条钢缆关于.10x9.0x0225.0y2即.10x9.0x0225.0y2y/mx/m桥面-50510109.00225.02xxy二次函数y=ax2+bx+c(a≠0)的图象和性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.a4bac4,a2b2a4bac4,a2b2a2bx直线a2bx直线a4bac4,a2bx2最小值为时当a4bac4,a2bx2最大值为时当小结二次函数y=ax2+bx+c的系数a、b、c与图象的关系a决定图象的形状开口方向开口大小a越大图象开口越小a越小图象开口越大当a0时开口向上当a0时开口向下b影响对称轴的位置当b=0时,对称轴为.当ab0时,对称轴在y轴.当ab0时,对称轴在y轴.y轴左侧右侧“同左异右”c确定图象与y轴的交点:(0,c)当c=0时图象过.当c0时图象与y轴半轴相交原点正当c0时图象与y轴半轴相交负二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的关系aa,bca决定开口方向:a>0时,开口向上,a<0时,开口向下a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧a、b异号时对称轴在y轴右侧b=0时对称轴是y轴c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴c=0时抛物线过原点c<0时抛物线交于y轴的负半轴二次函数的图象和性质典型例题解析【例1】已知二次函数y=ax2+bx+c的图像如图3-4-6所示,下列结论①a+b+c<0,②a-b+c>0;③abc>0;④b=2a中正确个数为()A.4个B.3个C.2个D.1个A练习:1.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数,图象顶点必在().A.直线y=-x上B.x轴上C.直线y=x上D.y轴上2.若所求的二次函数的图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小,则所求的二次函数的解析式为()A.y=-x2+2x-4B.y=ax2-2ax+a-3(a0)C.y=-x2-4x-5D.y=ax2-2ax+a-3(a0)xy5、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c0B、a0,b0,c0C、a0,b0,c0D、a0,b0,c0xy6、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c=0B、a0,b0,c=0C、a0,b0,c=0D、a0,b0,c=0BAo练习:4、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系内的大致图象是()xyoxyoxyoxyo(C)(D)(B)(A)xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b=0,c0B、a0,b0,c0C、a0,b=0,c0D、a0,b=0,c0CoC1、二次函数y=ax2+bx+c(a≠0)的图象如上图所示,那么下列判断正确的有(填序号).①abc0,②4a-2b+c0,③2a+b0,④a+b+c0,⑤a-b+c0,⑥4a+2b+c0,③练习:②-1-2xyo12三、二次函数解析式的几种基本形式:)0(12acbxax、y一般式)0()(22akmxa、y顶点式(配方式)已知顶点坐标、对称轴或最值已知任意三点坐标根据下列条件选择合适的方法求二次函数解析式:1、抛物线经过(2,0)(0,-2)(-2,3)三点。2、抛物线的顶点坐标是(6,-2),且与X轴的一个交点的横坐标是8。3、抛物线经过点(4,-3),且x=3时y的最大值是4。练习:(三)由函数图象上的点的坐标求函数解析式求下列条件下的二次函数的解析式:1.已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8)。2.已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2)。3.已知二次函数的图象与x轴交于(-1,0)和(6,0),并且经过点(2,12)四、数形结合一、如图直线l经过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图像在第一象限内相交于P点,若△AOP的面积为6.(1)求二次函数的解析式.ABPOxy解;由已知,A(4,0),B(0,4)得直线AB的解析式为y=-x+4,作PE⊥OA于E,则0.5OA×PE=6,可得PE=3当y=3时,3=-x+4,∴X=1,∴P(1,3)∵P在抛物线上,∴把x=1,y=3代入y=ax2,得a=3,∴y=3x2ExyOAxyOBxyOCxyOD例3:在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(二)根据函数性质判定函数图象之间的位置关系答案:B