物理学史杨映天一.物理学史的分期1.古代物理学时期---科学的萌芽期时间:从远古到16世纪中叶。特点:主要是对自然现象的观察和记载。这一时期,自然科学与哲学融合在一起,对自然现象的解释往往是哲理性的。文化中心:古希腊和古代中国。2.经典物理学时期:时间:从16世纪中叶到19世纪末。15世纪末,资本主义开始萌芽,社会生产力得到发展,有力地推动了科学的进程。16世纪中叶,哥白尼提出“日心说”。17世纪晚期,牛顿建立了经典力学体系,标志着近代物理学的诞生。之后,经典热力学、电磁学相继建立。到19世纪末,形成了比较完整的经典物理学体系。3.现代物理学时期:时间:从19世纪末到现在是现代物理学时期。19世纪末一系列实验新事实的发现,使经典物理学理论出现了不可克服的危机,从而导致了物理学革命;标志:相对论、量子力学的相继建立,标志着现代物理学的诞生。20世纪50年代以后,物理学已经发展成为一个相当庞大的学科群,包括高能物理(粒子物理)、原子核物理、等离子体物理、凝聚态物理、计算物理和理论物理等主体学科以及难以计数的分支学科。物理学与各学科之间相互交叉、相互渗透形成了众多很有发展前途的交叉科学。古代物理学时期泰勒斯(Thales),约公元前624年—公元前547年,希腊七贤之一,西方思想学史上第一个有记载有名字留下来的思想家。他对太阳的直径进行了测量和计算,正确的解释了日食的原因,并曾预测了一次日食。他生活的那个时代,整个社会还处于愚昧落后的状态,人们对许多自然现象是理解不了的。但是,泰勒斯却总想着探讨自然中的真理。因为他懂得天文和数学,又是人类历史上比较早的科学家,所以,人们称他为“科学之祖”。被后世誉为“科学之祖”。泰勒斯的哲学观点用一句话来总结就是“水生万物,万物复归于水”,他认为世界本原是水。泰勒斯还有一个很重要的观点就是“万物有灵”。—科学之祖泰勒斯古代物理学时期阿基米德,公元前287年—公元前212年,古希腊哲学家、数学家、物理学家。阿基米德到过亚历山大里亚,发明了阿基米德式螺旋抽水机。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法,阿基米德的几何著作是希腊数学的顶峰。最早提出了浮力原理,并阐述了杠杆原理,享有“力学之父”的美称。—力学之父阿基米德给我一个支点,我可以撬动地球阿基米德洗澡时发现浮力原理经典物理学时期尼古拉·哥白尼(波兰文:NikolajKopernik,1473年2月19日—1543年5月24日,享年70岁),是文艺复兴时期的波兰天文学家、数学家、教会法博士、神父。在哥白尼40岁时,他提出了日心说,否定了教会的权威,改变了人类对自然对自身的看法。哥白尼的“日心说”更正了人们的宇宙观。哥白尼是欧洲文艺复兴时期的一位巨人。他用毕生的精力去研究天文学,为后世留下了宝贵的遗产。—日心说的提出哥白尼经典物理学时期两个铁球同时着地伽利略·伽利雷(GalileoGalilei,1564-1642)他是近代实验科学的先驱者,是意大利文艺复兴后期伟大的天文学家、力学家、哲学家、物理学家、数学家。他是为维护真理而进行不屈不挠的战士。恩格斯称他是“不管有何障碍,都能不顾一切而打破旧说,创立新说的巨人之一”。伽利略生活的时代,正是欧洲历史上著名的文艺复兴时代,而意大利又是文艺复兴的发源地,人们对千百年来束缚思想的宗教神学和传统教条开始产生了动摇。1564年2月15日生于比萨,历史上他首先在科学实利略献出了毕生精力。由此,他晚年受到教会迫害,并被终身监禁。他以系统的实验和观察推翻了以亚里士多德。因此,他被称为“近代科学之父”。他的工作,为牛顿的理论体系的建立奠定了基础。爱因斯坦曾这样评价:“伽利略的发现,以及他所用的科学推理方法,是人类思想史上最伟大的成就之一,而且标志着物理学的真正的开端!”艾萨克·牛顿(IsaacNewton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和建立了经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。—人类历史上最伟大科学家牛顿经典物理学时期牛顿分光镜实验牛顿反射望远镜万有引力与天体运动光学方面:牛顿用三棱镜分析太阳光,发现白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。牛顿这一重要发现成为光谱分析的基础,揭示了光色的秘密。牛顿还发现了一种光的干涉图样,被后人称为牛顿环。他还创立了光的“微粒说”,从一个侧面反映了光的运动性质。天文学方面:牛顿制造了反射望远镜,用此初步考察了行星运动规律。他还用万有引力定律说明了潮汐现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。他预言地球不是正球体。数学方面:牛顿在前人工作的基础上,提出“流数法”,建立了二项式定理,并和莱布尼茨(德国数学家、物理学家、哲学家,1646~1716)几乎同时创立微积分学,为数学的发展开辟了一个新纪元。力学方面:牛顿在伽利略(意大利天文学家、力学家、哲学家,1564~1642)等人工作的基础上进行深入研究,总结出了物体机械运动的三个定律,即惯性定律、力和加速度定律、作用力和反作用力定律。在开普勒等人研究的成果上,他用数学方法导出了万有引力定律。牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。这个理论正确地反映了宏观物体低速运动的规律,实现了自然科学的第一次大统一。这是人类对自然界认识的飞跃。牛顿贡献一览经典物理学时期学实践与理论研结合起来,透彻地解决某些重要问题,形成了理论与实验结合的工作方法与明确的物理思想,他留给人们的科学论文与著作68种,《全集》有22卷,在碰撞、钟摆、离心力和光的波动说、光学仪器等多方面作出了贡献。—波动学说创始人惠更斯克里斯蒂安·惠更斯(ChristiaanHuygens,1629年04月14日—1695年07月08日)荷兰物理学家、天文学家、数学家,他是介于伽利略与牛顿之间一位重要的物理学先驱,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献,在数学和天文学方面也有卓越的成就,是近代自然科学的一位重要开拓者。他建立向心力定律,提出动量守恒原理,并改进了计时器。惠更斯处于富裕宽松的家庭和社会条件中,没受过宗教迫害的干扰,能比较自由地发挥自己的才能.他善于把科经典物理学时期詹姆斯·普雷斯科特·焦耳(JamesPrescottJoule;1818年12月24日-1889年10月11日),英国物理学家,出生于曼彻斯特近郊的沙弗特(Salford)。由于他在热学、热力学和电方面的贡献,皇家学会授予他最高荣誉的科普利奖(CopleyMedal)。后人为了纪念他,把能量或功的单位命名为“焦耳”,简称“焦”;并用焦耳姓氏的第一个字母“J”来标记热量。1840年12月提出电流通过—被命名为能量单位焦耳导体产生热量的定律,1852年焦耳和w.汤姆孙(即开尔文)发现气体自由膨胀时温度下降的现象,被称为焦耳-汤姆孙效应。焦耳的主要贡献是他钻研并测定了热和机械功之间的当量关系。他近40年的研究工作,为热运动与其他运动的相互转换,运动守恒等问题,提供了无可置疑的证据,焦耳因此成为能量守恒定律的发现者之一。无论是在实验方面,还是在理论上,焦耳都是从分子动力学的立场出发,进行深入研究的先驱者之一。在从事这些研究的同时,焦耳并没有间断对热功当量的测量。十八世纪,人们对热的本质的研究走上了一条弯路,“热质说”在物理学史上统治了一百多年。虽然曾有一些科学家对这种错误理论产生过怀疑,但人们一直没有办法解决热和功的关系的问题,是英国自学成才的物理学家詹姆斯·普雷斯科特·焦耳为最终解决这一问题指出了道路。经典物理学时期开尔文(LordKelvin1824~1907),19世纪英国卓越的物理学家。原名W.汤姆孙(WilliamThomson),1824年6月26日生于爱尔兰的贝尔法斯特,1907年12月17日在苏格兰的内瑟霍尔逝世。由于装设大西洋海底电缆有功,英国政府于1866年封他为爵士,后又于1892年封他为男爵,称为开尔文男爵,以后他就改名为开尔文。逝世后,为了纪念这位伟大的物理学家,将开尔文定为热力学温度的单位,是现在国际单位制中七个基本单位之一。他是19世纪的最伟大的人物之一,是一个伟—英帝国第一位物理学家开尔文大的数学物理学家兼电学家。他被看作英帝国的第一位物理学家,同时受到世界其他国家的赞赏。他的一生获得了一切可能给予的荣誉。而他也无愧于这一切,这是他在漫长的一生中所作的实际努力而获得的。这些努力使他不仅有了名望和财富,而且赢得了广泛的声誉。开尔文的科学活动是多方面的。他对物理学的主要贡献在电磁学和热力学方面。那时电磁学刚刚开始发展。逐步应用于工业而出现了电机工程,开尔文在工程应用上作出了重要的贡献。热力学的情况却是先有工业,而后才有理论。从18世纪到19世纪初,在工业方面已经有了蒸汽机的广泛应用,然而到19世纪中叶以后,热力学才发展起来。开尔文是热力学的主要奠基者之一。经典物理学时期安德烈·玛丽·安培(André-MarieAmpère,1775年—1836年),法国化学家,在电磁作用方面的研究成就卓著,对数学和物理也有贡献。电流的国际单位安培即以其姓氏命名。安培最主要的成就是1820~1827年对电磁作用的研究,发现了安培定则,发现电流的相互作用规律,发明了电流计,提出分子电流假说,总结了电流元之间的作用规律——安培定律。安培将他的研究综合在《电动力学—电学中的牛顿安培现象的数学理论》一书中,成为电磁学史上一部重要的经典论著。麦克斯韦称赞安培的工作是“科学上最光辉的成就之一,还把安培誉为“电学中的牛顿”。安培还是发展测电技术的第一人,他用自动转动的磁针制成测量电流的仪器,以后经过改进称电流计。安培在他的一生中,只有很短的时期从事物理工作,可是他却能以独特的、透彻的分析,论述带电导线的磁效应,因此我们称他是电动力学的先创者,他是当之无愧的。经典物理学时期詹姆斯·克拉克·麦克斯韦,英国物理学家、数学家。科学史上,称牛顿把天上和地上的运动规律统一起来,是实现第一次大综合,麦克斯韦把电、磁、光统一起来,是实现第二次大综合,因此应与牛顿齐名。1873年出版的《论电和磁》,也被尊为继牛顿《原理》之后的一部最重要的物理学经典。没有电磁学就没有现代电工学,也就不可能有现代文明。—电动力学创始人麦克斯韦麦克斯韦生前没有享受到他应得的荣誉,因为他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来。然而他没能看到科学革命的发生。1879年11月5日,麦克斯韦因病在剑桥逝世,年仅48岁。那一年正好爱因斯坦出生。科学史上这种巧合还有一次是在1642年,那一年伽里略去世,牛顿出生。一般认为麦克斯韦是从牛顿到爱因斯坦这一整个阶段中最伟大的理论物理学家。1879年他在临近48岁生日之际因病与世长辞。他光辉的生涯就这样过早地结束了。经典物理学时期海因里希·鲁道夫·赫兹(1857年2月22日-1894年1月1日)德国物理学家,于1888年首先证实了无线电波的存在。并对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。他在1886年至1888年间首先通过试验验证了麦克斯韦尔的理論。他证明了无线电輻射具有波的所有特性,并发现电磁场方程可以用偏微分方程表达,通常称为波动方程。此外,他也做了一系列的实验,不但证明电磁波的存在,发现它与光有相同的速度,同时有反射、折射等现象,而且对电磁波的波长、频率做了定量的测定。他也同时发展出电磁波发射、接收的方法,可以称得上是无线通讯的始祖。—无线电通讯始祖赫兹无线电装置电磁波谱19世纪,物理学以经典力学、热力学,统计物理学和电磁学为支柱,建立了一座宏伟而近乎完美的经典物理