生态学报2011,31(5):1303—1311ActaEcologicaSinica.ecologica.cn基金项目:国家重点基础研究发展规划(973计划)项目(2009CB118604);国家自然科学基金项目(30971722);陕西省自然科学基金项目(2010JM3002).收稿日期:2010-06-19;修订日期:2011-01-20*通讯作者Correspondingauthor.E-mail:xjq2934@yahoo.com.cn.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响张仁和,郑友军,马国胜,张兴华,路海东,史俊通,薛吉全*(西北农林科技大学农学院/黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100)摘要:以玉米品种郑单958(抗旱性强)和陕单902(抗旱性弱)为材料,采用盆栽控水试验,设置3个干旱处理(轻度干旱,中度干旱,重度干旱)和正常灌水,研究了干旱胁迫对玉米苗期叶片光合速率、叶绿素荧光以及相关生理指标的影响。结果表明:(1)干旱胁迫下2个品种叶片净光合速率(Pn)和气孔导度(Gs)显著下降,胞间CO2浓度(Ci)出现了先下降后上升,而气孔限制值(Ls)上升后下降,说明中度干旱胁迫下叶片Pn下降是气孔因素引起的,重度干旱胁迫下Pn降低主要由非气孔因素引起的。(2)随着干旱胁迫的加剧,2个品种叶片光系统Ⅱ(PSⅡ)的实际量子产量(φPSⅡ)、电子传递速率(ETR)和光化学猝灭(qP)一直下降,而非光化学猝灭(qN)上升后下降,说明中度干旱下热耗散仍是植株重要光保护机制,重度干旱时叶片光合电子传递受阻,PSⅡ受到损伤。(3)干旱胁迫下2个品种叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性先升高后降低,而丙二醛(MDA)含量一直升高,说明干旱胁迫初期对保护系统酶活性升高有诱导作用,重度胁迫下活性氧清除酶的活性下降,导致细胞膜伤害。这些结果暗示,轻度和中度干旱胁迫下2个玉米品种通过减少光捕获、热耗散和酶活性调节协同作用稳定了光合机构功能,是Pn下降的气孔限制因素;而重度干旱胁迫下光系统Ⅱ和抗氧化酶系统损伤,是Pn下降的非气孔限制因素;郑单958的各生理参数比陕单902受旱影响小,干旱胁迫下仍具有较高的光合效率和较强的保护酶活性是郑单958抗旱的主要生理原因。关键词:玉米;干旱胁迫;气体交换;叶绿素荧光;保护酶EffectsofdroughtstressonphotosynthetictraitsandprotectiveenzymeactivityinmaizeseedingZHANGRenhe,ZHENGYoujun,MAGuosheng,ZHANGXinghua,LUHaidong,SHIJuntong,XUEJiquan*CollegeofAgronomy,NorthwestA&FUniversity/StateKeyLaboratoryofSoilErosionandDrylandFarmingontheLoessPlateau,,Yangling712100,ChinaAbstract:Droughtisamajorlimitingfactoraffectingmaizegrowth,developmentandyieldmainlyinaridandsemiaridregionsofChina.Butthephysiologicalmechanismrelatedtosimultaneouscomparisonofphotosyntheticresponseandprotectiveenzymeactivity,whichcouldbeusefulforidentifyingdifferencesinmaizecultivarsunderdroughtstress,remainsunclear.Theobjectiveofthisstudywastoinvestigatetheeffectsofdroughtstressonthephotosyntheticcharacteristicsofthedifferentmaizecultivarsattheseedlingstageandtoofferatheoreticalbasisandtechnicalparametersforsaving-waterandhighyieldcultivationofmaize.Twomaizecultivars,zhengdan958(droughttolerance)andshandan902(droughtsensitive)growninpotsexperimentingreenhouseweresubjectedtothreedifferentdroughttreatments(milddrought,moderatedrought,severedrought)andcomparedtonormalirrigation.Thegasexchange,chlorophyllfluorescence,andprotectiveenzymeactivityweretested.Theresultsshowedthat:(1)theonsetofdroughtstresscausedanincreaseofleaf'snetphotosyntheticrate(Pn)andstomatalconductance(Gs),furthermore,intercellularCO2concentration(Ci)decreasedandthenincreased,butreversible,stomatallimits(Ls)increasedandthendecreasedunderdroughtstressintwocultivars.ThissuggestedthatreductionsinPnresultedfromstomatallimitationsundermildandmoderatedroughtstress;andfromnon-stomatallimitationsundertheseveredroughtstressinbothcultivars.(2)Inthechlorophyllfluorescenceparameters,.ecologica.cnleaf'sthequantumyield(φPSⅡ),electrontransportrate(ETR),photochemicalquenching(qP)decreasedwithincreasingdroughtstress,however,non-photochemicalquenching(qN)ofphotosystemⅡ(PSⅡ)activityincreasedsignificantlywiththedevelopingofdroughtstress,indicatingthatphotoprotectionwaseffective,whereasseverlydroughtstresscausedtheinhibitionofphotosyntheticelectrontransportleadingtodamageofPSⅡinthetwocultivars.(3)Underdroughtstresstheactivitiesofsuperoxidedismutase(SOD),peroxidase(POD),catalase(CAT)obviouslyincreasedandthendecreasedrapidly.Theincreaseofenzymeactivitiesindroughttolerancezhengdan958wasgreaterthanthatindroughtsensitiveshandan902.malondialdehyde(MDA)contentsincreasedcontinuously,beingsignificantlyhigherthanthatofthecontrol,theincreaseofMDAcontentsindroughtsensitiveshandan902wasgreaterthanthatindroughttolerancezhengdan958,whichcontributingtoregulateactivityoftheprotectionsystemduringtheinitialphaseofdroughtstress,andthenegativeeffectsofdroughtduringthestressperiodwereobserved.TheseresultsimpliedthatdroughtstressdepressedPnsignificantly,whichinducedbystomatallimitationandnon-stomatalfactorsatseedlingstage,underthemoderatedroughtstressthedecreasedPnweremainlyduetostomatallimitationsthroughstomatalregulation,theenhanceofthermaldissipationandantioxidantenzymejointly;undertheseveredroughtstressmajornon-stomatallimitationsresponsibleforreductioninPnwereassociatedwiththeimpairmentofPSⅡandantioxidantenzymesystem.Atsametime,thechangerangeofallphysiologicalparametersweresmallerinzhengdan958thaninshandan902.Basetheaboveresults,wespeculatethatzhengdan958maintainsthehigherphotosynthesisfunctionandthebetteroxidativeenzymedefensesystem'sabilitytoeliminatereactiveoxygencomparedtoshandan902underdroughtstress,whichcanbeconsideredasthemajorphysiologicaltraitsforitshigheryieldanddroughttolerance.KeyWords:maize;droughtstress;gasexchange;chlorophyllfluorescence;protectiveenzymeactivity干旱是抑制玉米生长和光合作用下降的重要原因[1-2],阻碍CO2进入叶片,影响羧化中心对CO2的吸收,净光合速率(Pn)下降[3-4]。然而气孔关闭引起CO2同化量下降促使PSⅡ光化学活性与Pn电子需求不平衡[4-5],吸收的过多光能导致光合机构的光抑制,严重时还可引起光破坏[6-7]。叶绿素荧光动力学参数可以较好地反映PSⅡ结构和功能变化[8],作物在逆境条件下,耐性品种具有较高的耗散过多光能的能力,即具有较高的非光化学猝灭系数(qN),以抵御不良环境[9];但也存在相反的研究结果[10],其原因是多仅从光合、荧光的角度研究干旱胁迫对作物光合性能的影响,其实逆境下植株除热耗散外,还可通过光呼吸、Mehler反应、叶黄素循环、活性氧清除系统等机制耗散过剩光能[11-6]。近年来已开始研究光氧化过程中叶片荧光特性和膜脂过氧化的关系,说明PSⅡ光能转化、活性氧代谢与逆境条件有密切联系[17-18]。因此,将光合作用与保护酶活性及其相互