课程设计任务书1.设计参数直流他励电动机:功率Pe=1.1KW,额定电流Ie=6.7A,磁极对数P=1,ne=1500r/min,励磁电压220V,电枢绕组电阻Ra=2.34Ω,主电路总电阻R=7Ω,L∑=246.25Mh(电枢电感、平波电感和变压器电感之和),Ks=58.4,机电时间常数Tm=116.2ms,滤波时间常数Ton=Toi=0.00235s,过载倍数λ=1.5,电流给定最大值10VUim,速度给定最大值10VUn2.设计内容1)根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。2)调速系统主电路元部件的确定及其参数计算。3)驱动控制电路的选型设计。4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。5)绘制V—M双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。3.设计要求:1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D),系统在工作范围内能稳定工作。2)系统静特性良好,无静差(静差率2S)。3)动态性能指标:转速超调量8%n,电流超调量5%i,动态最大转速降810%n,调速系统的过渡过程时间(调节时间)1sts。4)系统在5%负载以上变化的运行范围内电流连续。5)调速系统中设置有过电压、过电流保护,并且有制动措施。6)主电路采用三项全控桥。4.课程设计报告要求1)、要求在课程设计答辩时提交课程设计报告。2)、报告应包括以下内容:A、系统各环节选型主回路方案确定。控制回路选择主要电气设备的计算和选择系统参数计算B、系统调试过程介绍,在调试过程中出现的问题,解决办法等;C、课程设计总结。包括本次课程设计过程中的收获、体会,以及对该课程设计的意见、建议等;D、设计中参考文献列表;E、报告使用B5纸打印,全文不少于2000字。5.参考资料[1]朱仁初,万伯任.电力拖动控制系统设计手册[M].北京:机械工业出版社,1994.[2]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2006.[3]陈伯时.电力拖动自动控制系统-运动控制系统[M],第三版.北京:机械工业出版社,2007年6月.[4]孔凡才.晶闸管直流调速系统[M].北京:北京科技出版社,1985.[5]段文泽,童明倜.电气传动控制系统及其工程设计[M].四川:重庆大学出版社,1989.10.[6]运动控制系统课程设计指导书.第一章绪论1.4课程设计要求1.研究双闭环直流调速系统的研究和应用现状。2.调速系统主电路参数计算及元件的确定(包括有变压器、晶闸管、平波电抗器等)。3.驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可)。4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。5.绘制V-M双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图)。第二章双闭环直流调速系统的工作原理2.1直流调速系统简介调速系统是当今电力拖动自动控制系统中应用最普遍的一种系统。目前,需要高性能可控电力拖动的领域多数都采用直流调速系统。2.2晶闸管-电动机直流调速系统简介20世纪50年代末,晶闸管(大功率半导体器件)变流装置的出现,使变流技术产生了根本性的变革,开始进入晶闸管时代。由晶闸管变流装置直接给直流电动机供电的调速系统,称为晶闸管-电动机直流调速系统,简称V-M系统,又称为静止的Ward-leonard系统。这种系统已成为直流调速系统的主要形式。图1.1是V-M系统的简单原理图[1,3,5]。图中V是晶闸管变流装置,可以是单相、三相或更多相数,半波、全波、半控、全控等类型,通过调节触发装置GT的控制电压Uc来移动触发脉冲的相位,以改变整流电压Ud,从而实现平滑调速。由于V-M系统具有调速范围大、精度高、动态性能好、效率高、易控制等优点,且已比较成熟,因此已在世界各主要工业国得到普遍应用。-M++_LGTUcUd~~图1.1晶闸管-电动机直流调速系统(V-M系统)但是,晶闸管还存在以下问题:(1)由于晶闸管的单向导电性,给系统的可逆运行造成困难;(2)由于晶闸管元件的过载能力小,不仅要限制过电流和反向过电压,而且还要限制电压变化率(du/dt)和电流变化率(di/dt),因此必须有可靠的保护装置和符合要求的散热条件;(3)当系统处于深调速状态,即在较低速下运行时,晶闸管的导通角小,使得系统的功率因数很低,并产生较大的谐波电流,引起电网电压波形畸变,对电网产生不利影响;(4)由于整流电路的脉波数比直流电动机每对极下的换向片数要小得多,因此,V-M系统的电流脉动很严重。第三章控制系统的设计3.1设计内容和要求设计内容:1.根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。2.调速系统主电路元部件的确定及其参数计算。3.驱动控制电路的选型设计。4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。5.绘制V—M双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。设计要求:1.该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D),系统在工作范围内能稳定工作。2.系统静特性良好,无静差(静差率2S)。3.动态性能指标:转速超调量8%n,电流超调量5%i,动态最大转速降810%n,调速系统的过渡过程时间(调节时间)1sts。4.系统在5%负载以上变化的运行范围内电流连续。5.调速系统中设置有过电压、过电流保护,并且有制动措施。6.主电路采用三项全控桥。7.已知系统参数:直流他励电动机:功率Pe=1.1KW,额定电流Ie=6.7A,磁极对数P=1,ne=1500r/min,励磁电压220V,电枢绕组电阻Ra=2.34Ω,主电路总电阻R=7Ω,L∑=246.25Mh(电枢电感、平波电感和变压器电感之和),Ks=58.4,机电时间常数Tm=116.2ms,滤波时间常数Ton=Toi=0.00235s,过载倍数λ=1.5,电流给定最大值10VUim,速度给定最大值10VUn3.2双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如图2所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫做内环;转速环在外面,叫做外环。这样就形成了转速、电流双闭环调速系统。该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。一般的调速系统要求以稳和准为主,采用PI调节器便能保证系统获得良好的静态和动态性能。图2转速、电流双闭环直流调速系统图中U*n、Un—转速给定电压和转速反馈电压U*i、Ui—电流给定电压和电流反馈电压ASR—转速调节器ACR—电流调节器TG—测速发电机TA—电流互感器UPE—电力电子变换器3.3双闭环直流调速系统总设计框图在生活中,直接提供的是三相交流760V电源,而直流电机的供电需要三相直流电,因此要进行整流,本设计采用三相桥式整流电路将三相交流电源变成三相直流电源,最后达到要求把电源提供给直流电动机。如图2-1设计的总框架。图2-1双闭环直流调速系统设计总框架三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。一般保护有快速熔断器,压敏电阻,阻容式。根据不同的器件和保护的不同要求采用不同的方法。保护电路三相交流电源三相直流电源直流电机驱动电路双闭环调速系统整流供电驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节,它将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号。本设计使用的是晶闸管,即半控型器件。驱动电路对半控型只需要提供开通控制信号,对于晶闸管的驱动电路叫作触发电路。直流调速系统中应用最普遍的方案是转速、电流双闭环系统,采用串级控制的方式。转速负反馈环为外环,其作用是保证系统的稳速精度;电流负反馈环为内环,其作用是实现电动机的转距控制,同时又能实现限流以及改善系统的动态性能。转速、电流双闭环直流调速系统在突加给定下的跟随性能、动态限流性能和抗扰动性能等,都比单闭环调速系统好。3.4(1)主电路的结构形式在直流调速系统中,我们采用的是晶闸管-电动机调速系统(简称V-M系统)的原理图如图3-1所示。它通过调节处罚装置GT的控制电压cU来移动触发脉冲的相位,即可改变平均整流电压dU,从而实现平滑调速。与旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都很大提高,而且在技术性能上也显现出较大的优越性。对于要求在一定范围内无级平滑调速的系统来说,自动控制的直流调速系统往往以调压调速为主,根据晶闸管的特性,可以通过调节控制角α大小来调节电压。当整流负载容量较大或直流电压脉动较小时应采用三相整流电路,其交流侧由三相电源供电。三相整流电路中又分三相半波和全控桥整流电路,因为三相半波整流电路在其变压器的二次侧含有直流分量,故本设计采用了三相全控桥整流电路来供电,该电路是目前应用最广泛的整流电路,输出电压波动小,适合直流电动机的负载,并且该电路组成的调速装置调节范围广,能实现电动机连续、平滑地转速调节、电动机不可逆运行等技术要求。图3-1V-M系统原理图3-2主电路原理图三相全控制整流电路由晶闸管VT1、VT3、VT5接成共阴极组,晶闸管VT4、VT6、VT2接成共阳极组,在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。为了使元件免受在突发情况下超过其所承受的电压电流的侵害,在三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。一般保护有快速熔断器,压敏电阻,阻容式。(2)主电路的设计1.变流变压器的设计一般情况下,晶闸管变流装置所要求的交流供电电压与电网电压是不一致的,所以需要变流变压器,通过变压器进行电压变换,并使装置于电网隔离,减少电网于晶闸管变流装置的互相干扰。这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y联接。S为整流变压器的总容量,S为变压器一次侧的容量,1U为一次侧电压,1I为一次侧电流,2S为变压器二次侧的容量,2U为二次侧电压,2I为二次侧的电流,1m、2m为相数。为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压2U只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压2U。影响2U值的因素有:(1)2U值的大小首先要保证满足负载所需求的最大电流值的maxdI。(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用TV表示。(3)变压器漏抗的存在会产生换相压降。(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。(5)电枢电阻的压降。综合以上因素得到的2U精确表达式为:max2max[1(1)]%[]100dNaTddKdIUrnUIUICUABI式(3-1)式中NU为电动机额定电压;20UUAd;0ddUUB及C见表1-1;NNaURIr,NI为电动及额定电流,R为电动机电枢电路总电阻;TnU表示主电路中电流经过几个串联晶闸管的管压降;为电网电压