35Vol.3No.5200310TheChineseJournalofProcessEngineeringOct.20032003–02–18,2003–04–23(:20276073)(1977–),,,,,.(,100080).,––.UNIQUAC–..0.1~1.5MPa,337~440K.,.–..TQ021.8A1009–606X(2003)05–0453–06(DimethylCarbonate,DMC),[1,2].,.,DMC.,,(MeOH)DMC.MeOHDMC[MeOH70%(w)DMC30%(w)],MeOH–DMC,DMC,DMC..MeOH–DMC,MeOH–DMC,.,MeOH,DMC.DMCMeOH,DMC.,,DMC[3],[4–6].Luo[4,5]UNIFACNRTL;[6]WilsonNRTLUNIFAC,.1.0~1.5MPa,[4][7]UNIQUAC,,MeOH–DMC–,,.4543.MeOH–DMC(T–x–y)[4](T–P–x–y)[7],,,.MeOH–DMC,.UNIQUAC,RK.UNIQUAClnlnlnln1,2jijiiiiiijjijjiijjiiiiijizqlxlqxxqtfqfgqtfqt⎡⎤⎛⎞⎛⎞⎢⎥⎜⎟=++---+⎜⎟⎢⎥⎜⎟⎝⎠⎜⎟⎢⎥⎝⎠⎣⎦∑∑∑∑/(),iiijjjrxxrf=∑/(),iiijjjqxxqq=∑exp(/),ijijijabTt=+,ijjiaa≠0,iia=()1,2iiiizlrqr=-+-z=10,aij,bij.1[4]3MeOH–DMC[7]UNIQUAC,2.0.1~1.5MPa,337~440K.Table1ExperimentaldataofT–x–yforMeOH(1)–DMC(2)systemat101.3kPa[4]T(K)x1y1T(K)x1y1356.340.04470.2258338.450.56100.7264352.980.08150.3297337.870.62140.7374349.130.13190.4282337.490.67560.7669344.330.22540.5493336.990.82830.8402343.170.26100.5810337.000.85220.8534340.760.36540.6472337.030.87610.8679339.490.44390.6844337.150.93560.9187338.880.49870.7071337.520.97940.9686Table2BinaryinteractionparametersoftheUNIQUACequationforMeOH–DMCsystemijaijajibijbjiMeOHDMC–0.22362.2954221.043–1534.97Table3Comparisonoftheazeotropiccompositionsofexp.[7]andcal.dataatdifferentpressuresPressure(MPa)Temp.(K)Azeotropiccompositions(%,w)Exp.Cal.MeOH(1)DMC(2)MeOH(1)DMC(2)RD(1)1)(%)RD(2)1)(%)0.1013337.1570.03069.6930.310.44–1.030.2026355.1573.426.673.4426.56–0.050.150.4052377.1579.320.778.7721.230.66–2.560.6078391.1582.517.582.4817.520.02–0.110.8104402.1585.214.885.4914.51–0.341.951.013411.1587.612.487.8912.11–0.332.341.519428.1593.07.092.607.400.44–5.71ARD2)(%)0.321.96Note:1)RD(1)andRD(2)denoterelativedeviationforMeOH(1)andDMC(2),respectively;2)ARDdenotesaveragerelativedeviation.5––455.3MeOH–DMC.,0.32%,DMC1.98%.,,.,.,.10.11.5MPaMeOH(1)–DMC(2)x–y.21.5MPaMeOH(1)–DMC(2)T–x–y.1,MeOH–DMCMeOH70%(w),DMC30%(w)(A),DMC,,(B).1.5MPa,MeOHDMCMeOH93%(w),DMC7%(w).(A)B,2,,1.5MPaMeOH–DMC(B),DMC(C).,MeOH–DMC.21.5MPaMeOH(1)DMC(2)T–x–yFig.2T–x–ydiagramofMeOH(1)–DMC(2)at1.5MPa10.11.5MPaMeOH(1)–DMC(2)x–yFig.1x–ydiagramofMeOH(1)–DMC(2)at0.1and1.5MPa0.00.20.40.60.81.00.00.20.40.60.81.0BA(a)0.1MPa1.5MPay1x10.60.70.80.91.00.60.70.80.91.0BA(b)0.1MPa1.5MPay1x10.00.20.40.60.81.0420430440450460470480490CBA(a)T(K)y1/x10.60.70.80.91.0426.4426.6426.8427.0427.2427.4BA(b)T(K)y1/x14563,.,,.(1):DMC(QB)3.,,.6,.,,,.,6~10.(2),.DMC4.,1.0~1.5MPa90%(w)DMC,,DMC.(3)DMC5.,,.,35,.,40.,,.4.–Table4OptimalparametersofthehighpressuretowerforseparationofMeOH–DMCazeotropeHighpressuretowerHighpressuretowerStagenumber40Feedposition29Pressure(MPa)1.3Refluxmoleratio8DMC5DMCFig.4EffectofthedistillationcolumnpressureFig.5EffectofthestagenumberontheDMCconcentrationontheDMCconcentrationatthebottomatthebottomandequipmentsinvestment3DMCFig.3EffectoftherefluxratioonDMCconcentrationatthebottomandthereboilerduty0246810121416180.700.750.800.850.900.951.00RefluxmoleratioMassfractionofDMCatcolumnbottom0.00.20.40.60.81.01.21.41.6Numberofstages:40Feedstage:29Operationpressure:1.3MPaChargingrate:10kmol/hDistillaterate:9.0kmol/hQB(MMJ)024681012141618200.40.60.81.0Numberofstages40Feedstage29Refluxratio8,Chargingrate10kmol/hDistillaterate9.0kmol/hOperationpressure1.3MPaFeedstage29Refluxratio8Chargingrate10kmol/hDistillaterate9.0kmol/hConc.ofDMCatcolumnbottomColumnpressure(MPa)202530354045508486889092ConcentrationofDMCStagenumbersConc.ofDMCatcolumnbottom(%,w)12141618202224TheequipmentinvestmentEquipmentinvestment(x104RMB)5––457,(DMC).,,6–MeOH–DMC[3].6T1,1MeOH–DMC,2,MeOH,.3DMC.T2DMC,4MeOH–DMC,1,5DMC.6,99.5%(w)DMC.5.Table5SimulationresultsoftheflowsheetforseparationofMeOH–DMCazeotropeItems12345(DMC)Temperature(K)333.15343.15443.74336.91366.79Pressure(MPa)1.51.311.340.100.10Vaporfraction(mol)00000Moleflow(kmol/h)10.09.151.0180.1680.85Massflow(kg/h)397.19320.7783.246.8276.42MassfractionMEOH0.7000.8670.0560.6730.001DMC0.3000.1330.9440.3270.999(1)MeOH–DMCT–P–x–yUNIQUAC.DMC1.98%.0.1~1.5MPa,337~440K.(2),40297~101.0~1.5MPa.–MeOH–DMC,.aijbijliqiiriivanderWaalsT(K)xiizfiitijgiqiMeOHDMCT1:High-pressurecolumnT2:Atmosphericcolumn6–Fig.6Combinedseparationsystemofhigh-pressurecolumnandatmosphericcolumn4583[1]PachecoMA,MarshallCL.ReviewofDimethylCarbonate(DMC)ManufactureandItsCharacteristicsasaFuelAdditive[J].EnergyFuels,1997,11:2–29.[2],.[J].,2001,29(3):29–33.[3],.[J].,2001,1:2–3.[4]LuoHP,XiaoWD,ZhuKH.IsobaricVapor–LiquidEquilibriaofAlkylCarbonateswithAlcohols[J].FluidPhaseEquilibria,2000,175:91–105.[5]LuoHP,ZhouJH,XiaoWD,etal.IsobaricVapor–LiquidEquilibriaofBinaryMixturesContainingDimethylCarbonateunderAtmosphericPressure[J].J.Chem.Eng.Data,2001,46(4):842–845.[6],.[J].,2001,23(4):4–13.[7]KogaK.SeparationofDimethylCarbonate[P].JapanPetant:2212456,1990–08–23.[8]ComeliF,FrancesconiR.IsothermalVapor–LiquidEquilibriaMeasurements,ExcessMolarEnthalpies,andExcessMolarVolumesofDimethylCarbonate+Methanol,+Ethanol,and+Propan-1-olat313.15K[J].J.Chem.Eng.Data,1997,42(4):705–709.[9],,,.[J].,2000,26(6):592–595.[10],.[J].,1991,7(1