第四章酶分析法一、酶的定义由活细胞合成的、具有高度专一性,对其特异底物起高效催化作用的蛋白质.是机体内催化各种代谢反应最主要的催化剂二酶的基本性质1、酶是生物催化剂酶是生物细胞产生的、以蛋白质为主要成分的、能加快化学反应速度、使之迅速达到平衡、但不改变反应的平衡常数的生物催化剂。酶的催化活性受多种因素调节控制。2、酶能加快细胞内的化学反应速度按照能量学的观点,一个化学反应并不是从反应物直接向产物生成的方向进行的。反应的发生,即产物的生成取决于过渡态或转换态(transitionstate)的能量状况。只有当反应物在空间定向上有利于反应以及反应物达到转换态所需的能量(即是否处在化学键的断裂或形成所需的范围内)时,反应才能发生。很显然,转换态越能有效的达到,反应的速度就越大。根据转换态的理论,一种催化剂的作用在于以某种途径降低反应的活化能而增高化学反应速度。因此,在有催化剂存在的情况下,转换态能比较有效地达到,从而增高反应的速度。典型的酶促反应速度比无催化剂存在的反应要高出106~1012倍。3、酶不能改变化学反应的平衡反应速度和反应平衡之间有着重要的差别。催化剂的功能是增高反应的速度,而不会改变反应的平衡。酶的存在,象其他催化剂一样,只能降低达到转换态所需的活化能而不能改变反应的平衡,它唯一的作用是加速反应物和产物的相互转化。在反应中,酶不会被消耗,平衡点不会改变,但达到平衡的速度则要快得多。4、酶的催化反应具有专一性酶对所催化的底物具有不同程度的选择性。某一种酶往往只能对某一类物质起作用,或者只对某一种物质起催化作用。一般无机催化剂对它们所作用的底物没有这种严格的选择性。•5高度的不稳定性•6反应条件温和•7酶活性可调性3.4酶促反应动力学酶促反应动力学(kineticsofenzyme-catalyzedreactions)是研究酶促反应速度及其影响因素的科学。酶促反应的影响因素主要包括酶的浓度、底物的浓度、pH、温度、抑制剂和激活剂等。酶促反应动力学一.酶浓度的影响在一定温度和pH下,酶促反应在底物浓度大于100Km时,速度与酶的浓度呈正比。酶浓度对速度的影响机理:酶浓度增加,[ES]也增加,而V=k3[ES],故反应速度增加。二.温度对酶促反应速度的影响酶促反应与其它化学反应一样,随温度的增加,反应速度加快。化学反应中温度每增加10℃反应速度增加的倍数称为温度系数Q10。一般的化学反应的Q10为2~3,而酶促反应的Q10为1~2。在一定范围内,反应速度达到最大时对应的温度称为该酶促反应的最适温度(optimumtemperatureTm).一般动物组织中的酶其最适温度为35~40℃,植物与微生物中的酶其最适温度为30~60℃,少数酶可达60℃以上,如细菌淀粉水解酶的最适温度90℃以上。温度对酶促反应速度的影响机理:1.温度影响反应体系中的活化分子数:温度增加,活化分子数增加,反应速度增加。2.温度影响酶的活性:过高的温度使酶变性失活,反应速度下降。最适温度不是酶的特征常数,因为一种酶的最适温度不是一成不变的,它要受到酶的纯度、底物、激活剂、抑制剂、酶反应时间等因素的影响。因此,酶的最适温度与其它反应条件有关。三.pH对酶促反应速度的影响大多数酶的活性受pH影响显著,在某一pH下表现最大活力,高于或低于此pH,酶活力显著下降。酶表现最大活力的pH称为酶的最适pH(optimumpHpHm)。典型的酶速度-pH曲线是较窄的钟罩型曲线,但有的酶的速度-pH曲线并非一定呈钟罩型。如胃蛋白酶和木瓜蛋白酶的速度-pH曲线。胃蛋白酶的速度-温度曲线如下图:胃蛋白酶和葡萄糖-6-磷酸酶的pH活性曲线:pH对酶促反应速度的影响机理:1、pH影响酶和底物的解离:酶的活性基团的解离受pH影响,底物有的也能解离,其解离状态也受pH的影响,在某一反应pH下,二者的解离状态最有利于它们的结合,酶促反应表现出最大活力,此pH称为酶的最适pH;当反应pH偏离最适pH时,酶促反应速度显著下降。2、pH影响酶分子的构象:过高或过低pH都会影响酶分子活性中心的构象,或引起酶的变性失活。动物体内多数酶的最适pH值接近中性,但也有例外,如胃蛋白酶的最适pH约1.8,肝精氨酸酶最适pH约为9.8(见下表)。一些酶的最适pH1902年,Henri用蔗糖酶水解蔗糖的实验中观察到:在蔗糖酶酶的浓度一定的条件下测定底物(蔗糖)浓度对酶反应速度的影响,它们之间的关系呈现矩形双曲线(rectangularhyperbola)。如下图所示:四、底物浓度对反应速度的影响1、酶反应与底物浓度的关系在底物浓度很低时,反应速度随底物浓度的增加而急骤加快,两者呈正比关系,表现为一级反应。随着底物浓度的升高,反应速度不再呈正比例加快,反应速度增加的幅度不断下降。如果继续加大底物浓度,反应速度不再增加,表现为零级反应。此时,无论底物浓度增加多大,反应速度也不再增加,说明酶已被底物所饱和。所有的酶都有饱和现象,只是达到饱和时所需底物浓度各不相同而已。为解释酶被底物饱和现象,Michaelis和Menten做了大量的定量研究,积累了足够的实验数据,提出了酶促反应的动力学方程:1kES1kES2kEPESEtSES[ES]生成速度:SESEkvt11,[ES]分解速度:ESkESkv212当酶反应体系处于恒态时:21vv即:ESkESkSESEkt211121kkkESSESSEt令:Kmkkk121则:SSESESKmtE(1)经整理得:SKSEmtES由于酶促反应速度由[ES]决定,即ESkv22kvES,所以(2)将(2)代入(1)得:SKSEkvmt2SKSEkmt2v(3)当[Et]=[ES]时,mVvtmEkV2(4)所以将(4)代入(3),则:SKSVvmmaxVmax指该酶促反应的最大速度,[S]为底物浓度,Km是米氏常数,V是在某一底物浓度时相应的反应速度。从米氏方程可知:当底物浓度很低时[S]Km,则V≌Vmax[S]/Km,反应速度与底物浓度呈正比;当底物浓度很高时,[S]Km,此时V≌Vmax,反应速度达最大速度,底物浓度再增高也不影响反应速度。2.米氏常数的意义(1).物理意义:Km值等于酶反应速度为最大速度一半时的底物浓度。(2).Km值愈大,酶与底物的亲和力愈小;Km值愈小,酶与底物亲和力愈大。酶与底物亲和力大,表示不需要很高的底物浓度,便可容易地达到最大反应速度。(3).Km值是酶的特征性常数,只与酶的性质,酶所催化的底物和酶促反应条件(如温度、pH、有无抑制剂等)有关,与酶的浓度无关。酶的种类不同,Km值不同,同一种酶与不同底物作用时,Km值也不同。各种酶的Km值范围很广,大致在10-1~10-6M之间。3.Km在实际应用中的重要意义(1)鉴定酶:通过测定可以鉴别不同来源或相同来源但在不同发育阶段、不同生理状态下催化相同反应的酶是否属于同一种酶。(2)判断酶的最佳底物:如果一种酶可作用于多个底物,就有几个Km值,其中Km最小对应的底物就是酶的天然底物。如蔗糖酶既可催化蔗糖水解(Km=28mmol/L),也可催化棉子糖水解(Km=350mmol/L),两者相比,蔗糖为该酶的天然底物。(3)计算一定速度下的底物浓度:如某一反应要求的反应速度达到最大反应速度的99%,则[S]=99Km(4)了解酶的底物在体内具有的浓度水平:一般地,体内酶的天然底物的[S]体内≈Km,如果[S]体内Km,那么VVmax,细胞中的酶处于“浪费”状态,反之,[S]体内Km,那么V≈Vmax,底物浓度失去生理意义,也不符合实际状态。(5)判断反应方向或趋势:催化正逆反应的酶,其正逆两向的反应的Km不同,如果正逆反应的底物浓度相当,则反应趋向于Km小对应底物的反应方向。称为Lineweaver-Buck方程(或双倒数方程)(doublereciprocalplotorLineweaverBurkplot)方程:用1/V0对1/[S]的作图得一直线,其斜率是Km/Vmax,,在纵轴上的截距为1/Vmax,横轴上的截距为-1/Km。此作图除用来求Km和Vmax值外,在研究酶的抑制作用方面还有重要价值。双倒数作图法五.激活剂对酶反应速度的影响能使酶活性提高的物质,都称为激活剂(activator),其中大部分是离子或简单的有机化合物。如Mg++是多种激酶和合成酶的激活剂,动物唾液中的α-淀粉酶则受Cl-的激活。特点:1、酶对激活剂有一定的选择性,一种酶的激活剂对另一种酶来说可能是抑制剂2、有一定的浓度要求,当激活剂的浓度超过一定的范围时,它就成为抑制剂。激活剂六、抑制剂对反应速度的影响凡能使酶的活性下降而不引起酶蛋白变性的物质称为酶的抑制剂(inhibitor)。使酶变性失活(称为酶的钝化)的因素如强酸、强碱等,不属于抑制剂。通常抑制作用分为可逆性抑制和不可逆性抑制两类。(一)不可逆性抑制作用(irreversibleinhibition)不可逆性抑制作用的抑制剂,通常以共价键方式与酶的必需基团进行不可逆结合而使酶丧失活性。常见的不可逆抑制剂如下图所示。按其作用特点,又分专一性及非专一性两种。1.非专一性不可逆抑制抑制剂与酶分子中一类或几类基团作用,不论是必需基团与否,皆可共价结合,由于其中必需基团也被抑制剂结合,从而导致酶的抑制失活。某些重金属(Pb++、Cu++、Hg++)及对氯汞苯甲酸等,能与酶分子的巯基进行不可逆适合,许多以巯基作为必需基团的酶(通称巯基酶),会因此而遭受抑制,属于此种类型。用二巯基丙醇(britishantilewisite,BAL)或二巯基丁二酸钠等含巯基的化合物可使酶复活。2.专一性不可逆抑制此属抑制剂专一地作用于酶的活性中心或其必需基团,进行共价结合,从而抑制酶的活性。有机磷杀虫剂能专一作用于胆碱酯酶活性中心的丝氨酸残基,使其磷酰化而不可逆抑制酶的活性。当胆碱酯酶被有机磷杀虫剂抑制后,乙酰胆碱不能及时分解成乙酸和胆碱,引起乙酰胆碱的积累,使一些以乙酰胆碱为传导介质的神经系统处于过度兴奋状态,引起神经中毒症状。解磷定等药物可与有机磷杀虫剂结合,使酶和有机磷杀虫剂分离而复活。(二)可逆性抑制(reversibleinhibition)抑制剂与酶以非共价键结合,在用透析等物理方法除去抑制剂后,酶的活性能恢复,即抑制剂与酶的结合是可逆的。1.竞争性抑制(competitiveinhibition)(1)含义和反应式抑制剂I和底物S结构相似,抑制剂I和底物S对游离酶E的结合有竞争作用,互相排斥,已结合底物的ES复合体,不能再结合I。同样已结合抑制剂的EI复合体,不能再结合S(2)特点:①抑制剂I与底物S在化学结构上相似,能与底物S竞争酶E分子活性中心的结合基团.例如,丙二酸、苹果酸及草酰乙酸皆和琥珀酸的结构相似,是琥珀酸脱氢酶的竞争性抑制剂。②抑制程度取决于抑制剂与底物的浓度比、〔ES〕和〔EI〕的相对稳定性;③加大底物浓度,可使抑制作用减弱甚至消除。(3)竞争性抑制剂的动力学方程E+SESE+PE+IEIk1k2k3由米氏方程得:Km=①Ki=②〔E〕=〔E〕t-〔ES〕-〔EI〕③〔E〕〔S〕〔ES〕〔E〕〔I〕〔EI〕ki解方程①②③得:〔ES〕=〔E〕t(1+)+1Km〔S〕〔I〕Ki又因vi=k3〔ES〕,代入上式得:Vi=(1+)+〔S〕Km〔I〕KiVmax〔S〕竞争性抑制剂双倒数曲线,如下图所示:有竞争性抑制剂存在的曲线与无抑制剂的曲线相交于纵坐标I/Vmax处,但横坐标的截距,因竞争性抑制存在变小,说明该抑制作用,并不影响酶促反应的最大速度Vmax,而使Km值变大。1vi=(1+)KmVmax〔S〕1+Vmax1〔I〕Ki很多药物都是酶的竞争性抑制剂。例如磺胺药与对