1第二章数列练习题一、选择题:1.在等差数列na中,已知前20项之和17020S,则151296aaaa()AA.34B.51C.68D.702.在等差数列na中,48741aaa,40852aaa,则963aaa()BA.30B.32C.34D.363.在等差数列na中,4,1201da,若)2(naSnn,则n的最小值为()BA.60B.62C.70D.724.已知na为等比数列,对于任意*Nn,有12nnS,则22221naaa()CA.2)12(nB.2)12(21nC.)14(31nD.)13(2145.已知数列{na}的前n项和nS=3na-2,那么下面结论正确的是()BA.此数列为等差数列.此数列为等比数列C.此数列从第二项起是等比数列D.此数列从第二项起是等差数列奎屯王新敞新疆6.已知等差数列{na}满足,0101321aaaa则有C57.0.0.0.5199310021011aDaaCaaBaaA7.△ABC的内角CBA,,的对边分别为cba,,,且cba,,成等比数列,ac2,则Bcos=B32.42.43.41.DCBA8.等差数列}{na共有12n项,其中奇数项之和为319,偶数项之和为290,则其中间项为().BA.28B.29C.30D.319.已知等比数列na的前n项为nS,33S,627S,则此等比数列的公比q等于()AA.2B.2C.21D.1210.等差数列na的首项11a,公差0d,如果521aaa、、成等比数列,那么d等于(B)A.3B.2C.-2D.2二、填空题:11.在等比数列na中,nnaaaS21,已知12,123423SaSa,则公2比q__________.11.312.在等比数列na中,60321aaa,30654aaa,则9S_______.12.10513.nn223222132等于_________.13.nnn2212114.若数列na是等差数列,103,aa是方程0532xx的两根,则85aa.315.在等比数列na中,3254aa,822212logloglogaaa.2016.已知数列的12nnSn,则12111098aaaaa=_____________新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆16、100228910111212712121(771)100aaaaaSS三、解答题:17.已知等差数列{na}中,,0,166473aaaa求{na}前n项和ns.17.解:设na的公差为d,则11112616350adadadad即22111812164adadad解得118,82,2aadd或因此819819nnSnnnnnSnnnnn,或18.已知数列na的前n项和nnS23,求na18、解:111132,32,2(2)nnnnnnnnSSaSSn而115aS,∴)2(,2)1(,51nnann19.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆19、解:设此数列的公比为,(1)qq,项数为2n,则22222(1)1()85,170,11nnaqqSSqq奇偶2221122,85,2256,28,14nnSaqnSa偶奇∴,2q项数为820.等比数列{na}的前n项和为ns,已知1S,3S,2S成等差数列3(1)求{na}的公比q;(2)求1a-3a=3,求ns20.解:(Ⅰ)依题意有)(2)(2111111qaqaaqaaa由于01a,故022qq又0q,从而21-q(Ⅱ)由已知可得321211)(aa故41a从而))(()())((nnn211382112114S21.已知数列{}na是等差数列,且12a,12312aaa.⑴求数列{}na的通项公式;⑵令nnnba3*(N)n,求数列{}nb的前n项和的公式.21.解:(1)12a,12312aaa133122add,即2(1)22.nann(2)由已知:23nnbn23436323nnSn23…+①123436323nnSn2343…+②①-②得12323232323nnnSn23-2=16(13)2313nnn11133313()3222nnnnSnn.