数列试题和答案一、选择题1.已知数列{an}的前n项和Sn=n+1n+2,n∈N*,则a4等于()A.130B.134C.120D.132解析:由已知得a4=S4-S3=56-45=130.答案:A2.已知数列{an}的前n项和Sn=n2-9n(n∈N*),第k项满足5<ak<8,则k等于()A.9B.8C.7D.6解析:∵an=Sn-Sn-1=2n-10(n≥2),a1=S1=-8适合上式,∴an=2n-10(n∈N*).由5<ak<8,得5<2k-10<8,∴15<2k<18,∴7.5<k<9,又k∈N*,∴k=8.答案:B3.下列四个数中,是数列{n(n+1)}中一项的是()A.380B.390C.321D.230解析:∵19×20=380,∴380是{n(n+1)}的第19项.答案:A4.已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),则数列{xn}的前2010项的和S2010为()A.669B.670C.1338D.1340解析:x3=|x2-x1|=|a-1|=1-a,∴x1+x2+x3=1+a+1-a=2.∵xn+3=xn,其周期为3,∴x4+x5+x6=2,∴S2010=20103×2=1340.答案:D5.已知数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,记Sn=a1+a2+…+an,则下列结论正确的是()A.a100=-a,S100=2b-aB.a100=-b,S100=2b-aC.a100=-b,S100=b-aD.a100=-a,S100=b-a解析:∵an+1=an-an-1(n≥2),∴an+2=an+1-an=-an-1,∴an+5=-an+2=an-1,∴{an}是以6为周期的周期数列.又∵a4=-a,∴a100=-a;又S6=S12=…=S96=0,∴S100=a+b+(b-a)+(-a)=2b-a,故应选A.答案:A6.设函数f(x)的部分函数值如下表,数列{an}满足a1=2,an+1=f(an),则a2011=()x12345f(x)24313A.1B.2C.3D.4解析:依题意a1=2,a2=f(a1)=f(2)=4,a3=f(a2)=f(4)=1,a4=f(a3)=f(1)=2,a5=4,a6=1,∴a3n=1,得a2011=a1=2.答案:B二、填空题7.已知数列{an}满足a1=0,an+1=an-33an+1(n∈N*),则a20等于________.解析:a1=0,a2=-3,a3=3,a4=0,a5=-3,a6=3,…,an+3=an,∴a20=a2=-3.答案:-38.数列{an}中,a1=1,an+1=3an+2,则通项公式an=______.解析:由an+1=3an+2得an+1+1=3(an+1),∴an+1+1an+1=3,即{an+1}以a1+1为首项,公比为3的等比数列.∴an+1=2×3n-1,∴an=2×3n-1-1.答案:2×3n-1-19.已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2009=_____;a2014=________.解析:∵a2009=a503×4-3=1,a2014=a2×1007=a1007=a4×252-1=0.答案:1010.设a1=2,an+1=2an+1,bn=|an+2an-1|,n∈N*,则数列{bn}的通项bn=_____.解析:∵bn+1=|an+1+2an+1-1|=|2an+1+22an+1-1|=|2an+2an+1-an-1an+1|=|-2an+2an-1|=2bn,∴bn+1=2bn,又b1=4,∴bn=4·2n-1=2n+1.答案:2n+1三、解答题11.数列{an}的前n项和Sn满足Sn=14(an+1)2,且an0.(1)求数列{an}的通项公式;(2)令bn=20-an,问数列{bn}的前多少项和最大?解析:(1)由已知,得4Sn=(an+1)2,∴4Sn+1=(an+1+1)2,两式相减,得4an+1=a2n+1+2an+1-a2n-2an,∴(an+1+an)(an+1-an-2)=0.∵an0,∴an+1=an+2,∴{an}是等差数列,公差d=2,又a1=S1=14(a1+1)2,得a1=1,∴an=2n-1.(2)∵bn=20-an=21-2n,∴{bn}是递减数列.又b10=10,b11=-10,∴{bn}前10项的和最大.12.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{an}的通项公式;(2)设bn=3anan+1,Tn是数列{bn}的前n项和,求Tn.解析:(1)由已知,得f(x)=3x2-2x.∴Sn=3n2-2n,n≥2时,an=Sn-Sn-1=6n-5,又n=1时,a1=S1=1适合上式.∴{an}的通项an=6n-5(n∈N*).(2)bn=3anan+1=36n-56n+1=12[16n-5-16n+1],∴Tn=12[(1-17)+(17-113)+…+(16n-5-16n+1)]=12[1-16n+1]=3n6n+1.