2017年湖北省恩施州中考数学试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的绝对值是()A.﹣7B.7C.D.【考点】15:绝对值.【分析】根据绝对值的定义即可解题.【解答】解:∵正数的绝对值是其本身,∴|7|=7,故选B.2.大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1450000用科学记数法表示为1.45×106.故选:D.3.下列计算正确的是()A.a(a﹣1)=a2﹣aB.(a4)3=a7C.a4+a3=a7D.2a5÷a3=a2【考点】4I:整式的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣a,符合题意;B、原式=a12,不符合题意;C、原式不能合并,不符合题意;D、原式=2a2,不符合题意,故选A4.下列图标是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.5.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.6.如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠2=∠4【考点】JB:平行线的判定与性质.【分析】先根据题意得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选D.7.函数y=+的自变量x的取值范围是()A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.8.关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.﹣1<m≤0D.﹣1≤m<0【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组无解,[来源:学科网ZXXK]∴m≤﹣1,故选:A9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:C.10.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5B.6C.7D.8【考点】8A:一元一次方程的应用.【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:200×﹣80=80×50%,解得:x=6.故选B.11.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6B.8C.10D.12【考点】S9:相似三角形的判定与性质.【分析】由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选C.12.如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5B.4C.3D.2【考点】HA:抛物线与x轴的交点;F8:一次函数图象上点的坐标特征;H5:二次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(﹣1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=﹣x2+2x+3,进而判断各选项即可.【解答】解:∵直线l1:y=﹣3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(﹣1,0).∵直线l2:y=﹣3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=﹣3x+9,得3=﹣3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=﹣x2+2x+3.①∵抛物线y=ax2+bx+c过E(﹣1,0),∴a﹣b+c=0,故①正确;②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,∴S四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.[来源:学科网]综上可知,正确的结论有3个.故选C.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.16的平方根是±4.【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.14.分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.15.如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为3﹣π.(结果不取近似值)【考点】MO:扇形面积的计算;KQ:勾股定理;M5:圆周角定理.【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC﹣AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF=×2×6﹣×3×﹣﹣××=3﹣π.故答案为:3﹣π.16.如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=2.【考点】37:规律型:数字的变化类.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.【解答】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为