第五章《相交线与平行线》单元检测题题号一二三总分2122232425262728分数一、选择题(每题3分,共30分)1.如图,图中对顶角共有()对.A.6B.11C.12D.132.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.3.如图,∠1和∠2是直线()和直线()被直线()所截得到的().应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角4.下列说法正确的是()①平面内,不相交的两条直线是平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平面内,过一点有且只有一条直线与已知直线平行;④相等的角是对顶角;⑤P是直线a外一点,A、B、C分别是a上的三点,PA=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个5.如图所示,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④6.如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°7.如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4B、5:8C、9:16D、1:28.已知直线m∥n,将一块含30°角的直角三角板ABC按如图7所示的方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()图7A.20°B.30°C.45°D.50°9.如图8,已知∠1=∠2,有下列结论:①∠3=∠D;②AB∥AB;③AD∥BC;④∠A+∠D=180°.其中正确的有()图8A.1个B.2个C.3个D.4个10.如图,直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A、23°B、42°C、65°D、19°二、填空题(每题4分,共24分)11.如图10,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为_______.图1012.如图11,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是________.图1113.一大门栏杆的平面示意图如图12所示,BA垂直地面AE于点A,AB平行于地面AE.若∠BAB=150°,则∠ABC=________.图1214.如图13,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于_________.图13ABCDE(第10题)15.如图14,直线AB∥AB∥AB,则∠α+∠β-∠γ=_________.图1416.一副直角三角尺叠放如图15①所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为________________________.图15三、解答题(共66分)17.(8分)如图16,补充下列结论和依据.图16∵∠ACE=∠D(已知),∴_____∥______(___________________________).∵∠ACE=∠FEC(已知),∴______∥______(___________________________).∵∠AEC=∠BOC(已知),∴_____∥______(_____________________________).∵∠BFD+∠FOC=180°(已知),∴_____∥______(______________________________).18.(8分)如图17,直线AB与AB相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥AB.图17(1)图中除直角和平角外,还有相等的角吗?请写出两对:①__________________;②_________________________________________.(2)如果∠AOD=40°,求∠COP和∠BOF的度数.19.(8分)如图18,已知∠ABC=180°-∠A,BD⊥AB于点D,AB⊥AB于点F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.图1820.(10分)如图19,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠AAB,CG⊥CF于点C.(1)若∠O=38°,求∠ECF的度数;(2)试说明CG平分∠OAB的理由;(3)当∠O为多少度时,AB平分∠OCF,请说明理由.图1921.(10分)如图20,BD⊥AC于点D,AB⊥AC于点F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度数;(2)求证:DM∥BC.图2022.(10分)是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图21,BC∥AD,BE∥AF.(1)求证:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.图2123.(12分)[2017春·蚌埠期末]问题情境:如图22①,AB∥AB,∠PAB=130°,∠PAB=120°,求∠APC的度数.小明的思路是:如图22②,过点P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:图22(1)如图22③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD,∠α,∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A,M两点之间和B,O两点之间运动时(点P与点A,B,O三点不重合),请分别写出∠CPD,∠α,∠β之间的数量关系.参考答案一、1.A2.C3.D4.B5.D6.A7.A8.D9.B10.D二、11.50°【解析】∵DE∥OB,∴∠EDO=∠1=25°.∵OD平分∠AOB,∴∠AOD=25°,∴∠AED=25°+25°=50°.12.60°【解析】因为PQ∥ON,PD⊥ON,所以∠QPD=∠ODP=90°.又因为∠OPD=30°,所以∠MPQ=180°-30°-90°=60°.13.120°【解析】如答图,过点B作BF⊥AB,AB⊥AE.∴∠ABF=90°.∵AB⊥AE,∴AE∥BF.∵AB∥AE,∴AB∥BF.∵∠BAB=150°,∴∠CBF=180°-∠BAB=30°.则∠ABC=∠ABF+∠CBF=120°.14.90°15.180°【解析】∵AB∥AB,∴∠ADC=∠α.∵∠ADC+∠ABF+∠β=360°,∴∠α+∠β-∠γ=360°-∠ABF-∠γ=360°-(∠ABF+∠γ).∵AB∥AB,∴∠ABF+∠γ=180°,∴∠α+∠β-∠γ=180°.16.45°,60°,105°,135°【解析】如答图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.三、17.CEDF同位角相等,两直线平行EFAD内错角相等,两直线平行AEBF同位角相等,两直线平行ECDF同旁内角互补,两直线平行18.(1)∠COE=∠BOF∠COP=∠BOP、∠COB=∠AOD(写出任意两对即可)解:(2)∵∠AOD=∠BOC=40°,∴∠COP=12∠BOC=20°.∵∠AOD=40°,∴∠BOF=90°-40°=50°.19.(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC.(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°.∵BD⊥AB,AB⊥AB,∴BD∥AB,∴∠2=∠3=36°.20.解:(1)∵DE∥OB,∠O=38°,∴∠ACE=∠O=38°.∵∠AAB+∠ACE=180°,∴∠AAB=142°.∵CF平分∠AAB,∴∠ACF=12∠AAB=71°,∴∠ECF=∠ACE+∠ACF=109°.(2)∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°.又∵∠GCO+∠DCG+∠DCF+∠ACF=180°,∴∠GCO+∠FCA=90°.∵∠ACF=∠DCF,∴∠GCO=∠GAB,即CG平分∠OAB.(3)当∠O=60°时,AB平分∠OCF.理由如下:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠AAB=120°,又∵CF平分∠AAB,∴∠DCF=60°,∴∠DCO=∠DCF,即AB平分∠OCF.21.解:(1)∵BD⊥AC,AB⊥AC,∴BD∥AB,∴∠ABG=∠1=35°,∴∠GFC=90°+35°=125°.(2)∵BD∥AB,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC.∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.22.解:(1)证明:∵BC∥AD,∴∠B=∠DOE.又∵BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF,得∠EOA+∠A=180°,∴∠DOB+∠A=180°.又∵∠DOB=135°,∴∠A=45°.23.解:(1)∠CPD=∠α+∠β.理由如下:如答图1,过P作PE∥AD交AB于点E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A,M两点之间时,∠CPD=∠β-∠α;理由:如答图2,过P作PE∥AD交AB于点E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α.当点P在B,O两点之间时,∠CPD=∠α-∠β.理由:如答图3,过P作PE∥AD交AB于点E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.答图1答图2答图3