电工技术1第3章交流电路3.1正弦交流电的基本概念3.2正弦交流电的相量表示法3.3单一参数交流电路3.4串联交流电路3.5并联交流电路3.6交流电路的功率3.7电路的功率因数*3.8电路中的谐振3.9非正弦周期信号电路下一章上一章3.10应用实例返回主页第3章交流电路2高等教育出版社3.1正弦交流电的基本概念交流电:大小和方向都周期性变化、在一个周期上的函数平均值为零。正弦交流电:按正弦规律变化的交流电。最大值角频率初相位i=Imsin(ωt+ψ)ImOiωtψ正弦交流电的三要素瞬时值最大值角频率初相位第3章交流电路3高等教育出版社正弦交流电的波形:ωtiOωtiOψωtiOωtiOψ0<ψ<180°-180°<ψ<0°ψ=0°ψ=±180°第3章交流电路4高等教育出版社周期T:变化一周所需要的时间(s)。频率f:1s内变化的周数(Hz)。角频率ω:正弦量1s内变化的弧度数。T1f==2π(rad/s)T一、交流电的周期、频率、角频率ω=2πfi2πOωtT第3章交流电路5高等教育出版社常见的频率值有线通信频率:300~5000Hz;中国和欧洲国家50Hz,美国、日本60Hz各国电网频率:高频加热设备频率:200~300kHz。无线通信频率:30kHz~3×104MHz;第3章交流电路6高等教育出版社如果热效应相当,Wd=Wa,则I是i的有效值。正弦电量的有效值:Wd=RI2Te、i、uEm、Im、UmE、I、U二、交流电瞬时值、最大值、有效值I=Im√2U=Um√2E=Em√2瞬时值最大值有效值IRRitRiWTda02第3章交流电路7高等教育出版社i=10sin(1000t+30°)Au=311sin(314t-60°)V相位:ωt+ψ初相位:ψi=30°,ψu=-60°相位差:同频率的正弦电量的初相位之差。i=100sin(314t+30)Au=311sin(314t-60)V=ψu-ψi=-60-30=-90相位初相位三、交流电的相位、初相位、相位差第3章交流电路8高等教育出版社ωtiOωtiOωtiOωtiO0<<180°-180°<<0°=0°=±180°uuuuu与i同相位u超前于iu滞后于iu与i反相第3章交流电路9高等教育出版社ωtO+1+jOψψωωt2ωt1ωt1ωt2(b)正弦交流电(a)旋转矢量3.2正弦交流电的相量表示法+j+1Oψ正弦交流电可以用一个固定矢量表示Im最大值相量I有效值相量ImI第3章交流电路10高等教育出版社模辐角代数式指数式极坐标式三角式O+1+jψbap=c(cosψ+jsinψ)一、复数的表示方法=cejψ=cψOp=a+jb第3章交流电路11高等教育出版社二、复数的运算方法复数的运算:加、减、乘、除法。加、减法:A1±A2=(a1±a2)+j(b1±b2)乘法:A1A2=c1c2ψ1+ψ2设:A1=a1+jb1=c1ψ1A2=a2+jb2=c2ψ2≠0=A1A2c1c2ψ1-ψ2除法:第3章交流电路12高等教育出版社+1O+jψ1e±j90=1±90=±j由于:-jI=Iej90=Iejψ·ej90=Iej(ψ90)jI1IjI1则jI=Iej90=Iejψ·ej90=Iej(ψ+90)第3章交流电路13高等教育出版社(2)相量图[例3.2.1]已知i1=20sin(ωt+60º)A,i2=10sin(ωt-45º)A。两者相加的总电流为i,即i=i1+i2。(1)求i的数学表达式;(2)画出相量图;(3)说明i的最大值是否等于i1和i2的最大值之和,i的有效值是否等于i1和i2的有效值之和,并说明为什么。[解](1)采用相量运算I1m=2060AA–45I2m=10Im=I1m+I2mA=19.930.9i=Imsin(ωt+ψ)=19.9sin(ωt+30.9)A+j+1O60°30.9°45°I1mI2mIm第3章交流电路14高等教育出版社(3)因为i1+i2的初相位不同,故最大值和有效值之间不能代数相加。第3章交流电路15高等教育出版社[例3.2.2]已知u1和u2的有效值分别为U1=100V,U2=60V,u1超前于u260º,求:(1)总电压u=u1+u2的有效值并画出相量图;(2)总电压u与u1及u2的相位差。[解](1)选u1为参考相量U1=1000AA–60U2=60U1+U=U2(100–60=0+60)VV–21.79=140相量图1=ψ–ψ12=ψ–ψ2ψUU1U2ψ2ψ2=601=ψ–ψ1=–21.79–0=–21.792=ψ–ψ2=–21.79–(–60)=38.21(2)第3章交流电路16高等教育出版社3.3单一参数交流电路1.电压、电流的关系(1)波形图一、纯电阻电路(2)大小关系U=RIUm=RImωtOiuU=RI如:U=U0UI则:I=I0(3)相量关系:第3章交流电路17高等教育出版社(2)平均功率(有功功率):=UI(1-cos2ωt)(1)瞬时功率p=ui=UmsinωtImsinωt=UmImsin2ωt2.功率关系p≥0——耗能元件。p与u2和i2成比例。iOωtPpu)(10WdUItpTPT第3章交流电路18高等教育出版社[例3.3.1]一只电熨斗的额定电压UN=220V,额定功率PN=500W,把它接到220V的工频交流电源上工作。求电熨斗这时的电流和电阻值。如果连续使用1h,它所消耗的电能是多少?[解]UN500PN220IN==A=2.27AW=PNt=(500×1)W·h=0.5kW·hIN220UN2.27R===96.9第3章交流电路19高等教育出版社1.电压、电流的关系二、纯电容电路(1)频率关系:同频率的正弦量;(2)大小关系:ωC1Um=Im(3)相位关系:ψu=ψi-90°1ωC容抗:XC=U=jXLIU=XCI(4)相量关系:(5)波形图:ωC1U=I90°wtOui(6)相量图:UI0U=U如I=I90则第3章交流电路20高等教育出版社(1)瞬时功率:p>0电容储存电场能量(电能→电场能量)p<0电容释放电场能量(电场能量→电能)Q=UI=XCI2(3)无功功率:U2XC=(var)2.功率关系(2)平均功率(有功功率)P=0p=UIsin2wt第3章交流电路21高等教育出版社[例3.3.2]今有一只47F的额定电压为20V的无极性电容器,试问:(1)能否接到20V的交流电源上工作;(2)将两只这样的电容器串联后接于工频20V的交流电源上,电路的电流和无功功率是多少?(3)将两只这样的电容器并联后接于1000Hz的交流电源上,电路的电流和无功功率又是多少?[解]故不可以接到20V的交流电上。(2)C1C2C1+C2C==23.5FQ=UI=20×0.15var=3var12πfCXC==135.520U所以:135.5XCI==A=0.15AVV8.2820414.12UUm第3章交流电路22高等教育出版社(3)C=C1+C2=94FQ=UI=10×11.83var=118.3var12fCXC==1.69I==AUXC201.69=11.83A第3章交流电路23高等教育出版社(1)频率关系:同频率的正弦量;(2)大小关系:Um=ωLImU=ωLI感抗:XL=ωL=U/IU=XLI(3)相位关系:ψu=ψi+90°(4)相量关系:1.电压、电流的关系三、纯电感电路U=jXLI(5)波形图:90°ωtOui(6)相量图:U=U则:90I=I0如:IU第3章交流电路24高等教育出版社结论:纯电感不消耗能量,只和电源进行能量交换(能量的吞吐)。2.功率关系(1)瞬时功率ωtOiu取用发出取用发出p=ui=UmcosωtImsinωt=UIsin2ωtpωtO22232322(3)无功功率=XLU2(var)(2)平均功率(有功功率)=UI=XLI2Q010TtpTPd第3章交流电路25高等教育出版社[例3.3.3]有一电感器,电阻可忽略不计,电感L=0.2H。把它接到220V工频交流电源上工作,求电感的电流和无功功率?若改接到100V的另一交流电源上,测得电流为0.8A,此电源的频率是多少?[解](1)接到220V工频交流电源时XL=2πfL=62.8U22062.8XLI==A=3.5AQ=UI=220×3.5var=770var(2)接到100V交流电源时XL2πLf==100Hz100U0.8IXL===125第3章交流电路26高等教育出版社=[R+j(XL-XC)]I一、R、L、C串联电路根据KVLU=UR+UL+UC3.4串联交流电路=RI+jXLI-jXCI=[R+j(XL-XC)]Iu=uR+uL+uC复数阻抗:ZZ=R+j(XL-XC)=R+jX=√R2+X2arctan(X/R)uCuL+uRLCi+++uR第3章交流电路27高等教育出版社0<<90°感性电路阻抗角:=arctan(X/R)=ψu-ψiuCuL+uRLCi+++uRU=UR+UL+UC电压三角形IULUCUCUUX=UL+UCX│Z│R阻抗三角形UR相量图:U=│Z│IUR=RIUX=XI=(XLXC)I阻抗:22XRZIU第3章交流电路28高等教育出版社=0IURULUCUUCULUCUUX=UL+UCIULUR90<<90电路呈阻性电路呈容性第3章交流电路29高等教育出版社[例3.4.1]已知U=12V,R=3,XL=4。求:1XC为何值时(XC≠0),开关S闭合前后,电流I的有效值不变。这时的电流是多少?2XC为何值时,开关S闭合前电流I最大,这时的电流是多少?[解]1开关闭合前后电流I有效值不变,则开关闭合前后电路的阻抗模相等。R2+XL2R2+(XLXC)2=故(XL–XC)2=XL2ULUCUR++SRjXLjXCIU+因XC≠0,求得XC=2XL=2×4=8|Z|=R2+XL2=32+42=5UI|Z|==2.4A第3章交流电路30高等教育出版社2开关闭合前,XL=XC时,|Z|最小,电流最大,故XC=XL=4|Z|=R=3UI|Z|==4A第3章交流电路31高等教育出版社二、阻抗串联电路Z=Z1+Z2KVL:U=U1+U2=ZIU=Z1I+Z2I=(Z1+Z2)IIU1U2UZ1Z2-+++=∑Ri+j∑XiZ=∑Zi=(R1+R2)+j(X1+X2)第3章交流电路32高等教育出版社[例3.4.2]有一个R、C串联的负载,R=6,C=159F。由工频的交流电源通过一段导线向它供电,测得电流为1.76A。已知输电线的电阻RW=0.5,电感LW=2mH。试求输电线上的电压降、负载的电压、电源的电压,并画出相量图。[解]XLW=2fLW=0.6280I=1.76AZW=RW+jXLW=0.5+j0.628=0.851.5UW=ZWI=1.451.5V12πfCXC==2073.3VUL=ZLI=36.75ZL=RjXC=6j20=20.8873.3第3章交流电路33高等教育出版社U=ZI=3671.45VZ=ZW+ZL=0.5+j0.628+6j2071.45=20.43ULUWIU71.45°第3章交流电路34高等教育出版社3.5并联交流电路Z=Z1∥Z2其中:Z1=R1+jXLZ2=R2jXCKCL:R1R2+LCUII1I2Z1Z2I=UUZ1Z2+)UZU)U=I=Z21Z11+(I=I1+I2第3章交流电路35高等教育出版社[例3.5.1]已知交流电路U=220V,R1=20Ω,R2=40Ω,XL=157Ω,XC=114,试求电路的总电流。[解]方法1:39.60=0.86A0U=220VA=1.3675.70I2Z2=U=22040+j157AIj114Ωj157Ω+UI2I1jXCjXLR1R220j114I1Z