计算方法练习题与答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.*x–12.0326作为x的近似值一定具有6位有效数字,且其误差限41021。()2.对两个不同数的近似数,误差越小,有效数位越多。()3.一个近似数的有效数位愈多,其相对误差限愈小。()4.用212x近似表示cosx产生舍入误差。()5.3.14和3.142作为的近似值有效数字位数相同。()二、填空题1.为了使计算2334912111yxxx的乘除法次数尽量少,应将该表达式改写为;2.*x–0.003457是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。三、选择题1.*x–0.026900作为x的近似值,它的有效数字位数为()。(A)7;(B)3;(C)不能确定(D)5.2.舍入误差是()产生的误差。(A)只取有限位数(B)模型准确值与用数值方法求得的准确值(C)观察与测量(D)数学模型准确值与实际值3.用1+x近似表示ex所产生的误差是()误差。(A).模型(B).观测(C).截断(D).舍入4.用s*=21gt2表示自由落体运动距离与时间的关系式(g为重力加速度),st是在时间t内的实际距离,则sts*是()误差。(A).舍入(B).观测(C).模型(D).截断5.1.41300作为2的近似值,有()位有效数字。(A)3;(B)4;(C)5;(D)6。四、计算题1.3.142,3.141,227分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1)1||,11211xxxx,(2)1||1112xdttxx(3)1||,1xex,(4)1)1ln(2xxx4.真空中自由落体运动距离s与时间t的关系式是s=21gt2,g为重力加速度。现设g是精确的,而对t有0.1秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。5*.采用迭代法计算7,取)7(21210kkkxxxxk=0,1,…,若kx是7的具有n位有效数字的近似值,求证1kx是7的具有2n位有效数字的近似值。练习题二一、是非题1.单点割线法的收敛阶比双点割线法低。()2.牛顿法是二阶收敛的。()3.求方程310xx在区间[1,2]内根的迭代法总是收敛的。()4.迭代法的敛散性与迭代初值的选取无关。()5.求非线性方程f(x)=0根的方法均是单步法。()二、填空题1.1.用二分法求非线性方程f(x)=0在区间(a,b)内的根时,二分n次后的误差限为;1.2.设)(xf可微,求方程)(xfx的牛顿迭代格式是;2.3.用二分法求方程310xx在区间[0,1]内的根,进行一步后根的所在区间为,要求准确到310,则至少应二分次;3.4.2()(5)xxx,要使迭代格式1()kkxx局部收敛到*5x,则的取值范围是;4.5.求方程340xx根的单点割线法是,其收敛阶为;双点割线法是,其收敛阶为。三、计算题1.用二分法求方程210xx的正根,使误差小于0.05。2.求方程3210xx在01.5x附近的一个根,将方程改写为下列等价形式,并建立相应迭代公式。(1)211xx,迭代公式1211kkxx;(2)321xx,迭代公式12311kkxx;(3)211xx,迭代公式111kkxx;试分析每种迭代公式的收敛性,并选取收敛最快的方法求具有4位有效数字的近似值。3.用牛顿切线法求5的近似值。取02x,计算三次,保留三位小数。4.用割线法求方程3310xx的在01.5x附近的一个根,精确到小数点后第二位。四*、证明题已知方程()0fx,试导出求根公式122()()2[()]()()kkkkkkkfxfxxxfxfxfx并证明:当*x是方程()0fx的单根时,公式是3阶收敛的。练习题四一、是非题1.矩阵521352113A具有严格对角优势。()2.521351113A是弱对角优势矩阵。()3.高斯—塞德尔迭代法一定比雅可比迭代法收敛快。()4.1||||M是迭代格式(1)()kkMxxf收敛的必要条件。()5*.逐次超松弛迭代法是高斯—赛德尔迭代法的一种加速方法。()二、填空题1.解方程组021532121xxxx的雅可比迭代格式(分量形式)为,该迭代矩阵的谱半径)(1B;2.解方程组021532121xxxx的高斯—赛德尔迭代格式(分量形式)为,迭代矩阵2B,该迭代矩阵的谱半径)(2B;3.幂法的迭代公式为;4*.QR算法是用来求矩阵的全部特征值的一种方法。5*.雅可比方法是用来求矩阵的全部特征值及特征向量的一种变换方法。三、选择题1.解方程组bAx的迭代格式(1)()kkMxxf收敛的充要条件是()(A)1||||A;(B)1||||M;(C)1)(A;(D)1)(M。2.幂法的收敛速度与特征值的分布()(A)有关;(B)无关;(C)不一定。3.幂法是用来求矩阵()特征值及特征向量的迭代法。(A)按模最大;(B)按模最小;(C)任意一个;(D)所有的。4.解代数线性方程组的松弛法收敛的必要条件是()(A)10;(B)10;(C)20;(D)20。5.反幂法是用来求矩阵()特征值及特征向量的迭代法。(A)按模最大;(B)按模最小;(C)任意一个;(D)所有的。四、计算题1.用简单迭代法(雅可比迭代法)解线性方程组84135332132131xxxxxxxx取(0)(0,0,0)Tx,列表计算三次,保留三位小数。2.用高斯—赛德尔迭代法解线性方程组13123123353148xxxxxxxx取(0)(0,0,0)Tx,列表计算三次,保留三位小数。3.用幂法求矩阵210121004A按模最大特征值及相应特征向量,列表计算三次,取(0)(1,1,1)Tx,保留两位小数。4*.取46.1,用松弛法解线性方程组041202124343232121xxxxxxxxxx取(0)(0,0,0)Tx,列表计算三次,保留三位小数。5*.用雅可比方法求实对称矩阵110121014A的特征值及相应特征向量(按四位小数计算,1.0)。6*.用QR算法求矩阵410131012A的全部特征值。练习题五一、是非题1.在求插值多项式时,插值多项式的次数越高,误差越小。()2.120102()()()()xxxxxxxx表示节点0x处的二次插值基函数。()3.牛顿插值多项式的优点是:在计算时,高一级的插值多项式可利用前一次插值的结果。()4.在拉格朗日插值中,插值节点01,,,nxxx必须按顺序排列。()5.利用等距节点的牛顿插值公式计算0x附近的)(xf,用后插公式。()二、填空题1.已知3n,则三次插值基函数)(2xl=_____________________。2.n+1个节点的拉格朗日插值基函数)(xli的和niixl0______)(。3.已知4)(xxf,取节点(0,1,2,kxkk…),用线性插值求)1.2(f的近似值,其计算公式1(2.1)(2.1)________________fP。4.______________插值不仅要求插值函数和被插值函数在节点取已知函数值而且取已知导数值。5.已知(1)2,(0)1,(2)3,fff则]0,1[f__________________,]2,0[f___________,[1,0,2]__________f,牛顿二次插值多项式2()Nx_____________________________。三、选择题1.函数101xxxx表示线性插值()点的基函数.(A)0x;(B)0y;(C)1x(D)1y。2.过点)4,2(),3,0(),1,1(的二次插值多项式)(2xp中2x的系数为().(A)–0.5(B)0.5(C)2(D)-23.给定互异的节点01,,,,nxxx)(xp是以它们为插值节点的插值多项式,则)(xp是一个().(A).n+1次多项式(B).n次多项式(C).次数小于n的多项式(D).次数不超过n的多项式4.差商,7503)(699xxxxf(]2,,2,2,1[1002f)(A)0(B)-3(C)50(D)-75.对于次数不超过n的多项式为次插值多项式它的)(),(xpnxf().(A)任意n次多项式(B)任意不超过n次的多项式(C))(xf本身(D)无法确定四、计算题1.已知,4)2(,3)1(,2)1(fff求)(xf的牛顿插值多项式)(2xN,及)5.1(f的近似值,取三位小数。2.证明:若f(x)二阶连续可微,则对于f(x)的以10,xx为节点的一次插值多项式1()Px,插值误差012101()()()()max8xxxxxfxPxfx3.设12)(4xxxf,利用拉格朗日插值余项求以-1,0,1,2为插值节点的三次插值多项式。4*.已知函数)(xfy的数据010)1(,)2(,)1(mfyfyf,用基函数法求f(x)的二次插值多项式)(2xH使202120(1),(2),(1)HyHyHm.5*.要给出()xfxe在区间[-2,2]上的等距节点函数表,用分段三次Hermite插值求的近似值xe,要使误差不超过810,问函数表的步长h应为多少?6.已知的f(x)函数表ix114)(ixf245(1)求f(x)的二次插值多项式;(2)用反插值求x,使f(x)=0。练习题六一、判断题1.在等距节点的情况下,才能计算函数的差分。()2.向前差分与向后差分不存在等量关系。()3.已知观察值),(iiyx(,2,1,0i…,n),用最小二乘法求得的拟合多项式其次数为n次。()4.利用最小二乘原理对一组数据找出合适的数学公式来拟合,首先应确定公式的类型。()5.数据拟合的步骤首先是建立正规方程组。()二、填空题1.已知某函数的二阶向前差分12f为0.15,则其二阶向后差分32f为_______。2.利用牛顿前插公式计算某点的近似值,应首先确定公式中的t,其计算公式为t=____________。3.已知函数iiyxnbaxfy处的函数值个节点上的在1],[)(,则其三次样条插值函数满足的条件为)(xs________________________。4.已知),(iiyx(,2,1i…,30),其线性拟合的正规方程组为_________。5.用形如baxxy的非线性拟合数据),(iiyx做变换_____________后为线性拟合y=xba。三.选择题1.()是利用函数的值求自变量的值。(A)三次样条插值(B)反插值(C)分段插值(D)爱尔米特插值2.记*,1,2,,iiiyyin,最小二乘法原理要求下列哪个为最小()(A)ini1max(B)nii1(C)nii12(D)nii13.当线性方程组满足()时称为超定方程组。(A)(A)未知数的个数等于方程的个数(B)(B)未知数的个数大于方程的个数(C)(C)未知数的个数小于方程的个数(D)(D)未知数的个数与方程的个数大小任意4.*x是超定方程组Axb的最小二乘解的充分必要条件是().(A)*TTAAAxxb是的解(B)*TTAAAxxb是的解(C)*TTA

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功