大学物理实验数学专业用1目录绪论……………………………………………………………………………………………………………(1)实验1伏安法测电阻……………………………………………………………………………………………(14)实验2电表的改装及多用表的使用……………………………………………………………………………(17)实验3横波在弦线上传播的研究………………………………………………………………………………(21)实验4用电流场模拟静电场……………………………………………………………………………………(23)实验5牛顿环……………………………………………………………………………………………………(26)实验6用落球法测液体的粘滞系数……………………………………………………………………………(29)附:实验报告样板……………………………………………………………………………………………(35)绪论大学物理实验课是高等院校理科的一门必修基础课程,是对学生进行科学实验基本训练,提高学生分析问题和解决问题能力的重要课程。它与物理理论课具有同等重要的地位。这里主要介绍测量误差理论、实验数据处理、实验结果表述等初步知识,这是进入大学物理实验前必备的基础。物理实验可分三个环节:1)课前预习,写预习报告。2)课堂实验,要求亲自动手,认真操作,详细记录。3)课后进行数据处理,完成实验报告。其中:预习报告的要求:1)实验题目、实验目的、实验原理(可作为正式报告的前半部分)。2)画好原始数据表格(单独用一张纸)。实验报告内容:(要用统一的实验报告纸做)1)实验题目;2)实验目的;3)实验原理:主要公式和主要光路图、电路图或示意图,简单扼要的文字叙述;4)主要实验仪器名称、规格、编号5)实验步骤:写主要的,要求简明扼要;6)数据处理、作图(要用坐标纸)、误差分析。要保留计算过程,以便检查;7)结论:要写清楚,不要淹没在处理数据的过程中;8)思考题、讨论、分析或心得体会;9)附:原始数据记录。测量误差及数据处理误差分析和数据处理是物理实验课的基础,是一切实验结果中不可缺少的内容。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量结果的可信赖程度。对低年级大学生,重点放在几个重要概念及最简单情况下的误差处理方法。一、测量与误差1、测量:把待测量与作为标准的量(仪器)进行比较,确定出待测量是标准量的多少倍的过程称为测量。测量得到的实验数据应包含测量值的大小和单位。22、测量的分类按照测量结果获得的方法来分,可分为直接测量和间接测量两类;而从测量条件是否相同来分,又可分为等精度测量和非等精度测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用电流表测量电流等。间接测量是借助函数关系由直接测量的结果计算出的物理量。例如已知了路程和时间,根据速度、时间和路程之间的关系求出的速度就是间接测量。一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。等精度测量是指在相同条件下进行的多次测量,即:同一个人,用同一台仪器,每次测量时周围环境条件相同,所取参数相同。等精度测量每次测量的可靠程度相同。注意:重复测量必须是重复进行测量的整个操作过程,而不是仅仅重复读数。物理实验中大多采用等精度测量。反之,若每次测量时的条件不同,如测量仪器改变,或测量方法条件改变,或不同的人。这样所进行的一系列测量叫做非等精度测量。3、描述仪器性能的基本概念描述仪器性能的基本概念有仪器精密度、准确度和量程等。仪器精密度:是指仪器能分辨的物理量的最小值,一般是仪器的最小分度值。仪器最小的分度越小,仪器精密度就越高,所测量物理量的精密度也越高。对测量读数最小一位的取值,一般在仪器最小分度范围内再估读一位数字。如米尺的最小分度为毫米,其精密度就是1毫米,应估读到毫米的十分位。仪器准确度:是指仪器测量读数的可靠程度。一般标在仪器上或写在仪器说明书上。如电学仪表所标示的级别就是该仪器的准确度。对不同的仪器准确度是不一样的,如对测量长度的常用仪器:米尺、游标卡尺和螺旋测微器,它们的仪器准确度依次提高。量程:是指仪器所能测量的物理量最大值和最小值之差,即仪器的测量范围(有时也将所能测量的最大值称量程)。测量过程中,超过仪器量程使用仪器是不允许的,轻则仪器准确度降低,使用寿命缩短,重则损坏仪器。4、误差与偏差在一定条件下,任何物理量的大小都有一个客观存在的真实值,称为真值。测量的目的就是为了得到被测物理量所具有的客观真实数据,但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,只能获得该物理量的近似值,即测量值x与真值a之间总是存在着一定的差值,这种差值称为测量误差,即ε=x-a显然误差ε有正负之分,常称为绝对误差。注意,绝对误差不是误差的绝对值!设某个物理量真值为a,进行n次等精度测量,测量值分别为x1,x2,…xn,(不考虑系统误差)。可证明其算术平均值为最佳估计值:nxxnii1(1)当测量次数n→∞时,ax,即x为测量值的近似真实值。为了估计误差,定义测量值与近似真实值的差值为偏差。即xxxii。测量中真值是未知的,因此误差也无法知道,而测量的偏差可以准确知道,实验误差分析中常用偏差来描述测量结果的精确程度。5、系统误差与随机误差根据误差的性质和产生的原因,可分为系统误差和随机误差。1)系统误差是指在一定条件下多次测量的结果总是向一个方向偏离,其数值一定或按一定规律变化。3系统误差的特征是具有一定的规律性。系统误差的来源有以下几个方面:(1)仪器误差。由于仪器本身的缺陷或没有按规定条件使用仪器而造成的误差;例如,用秒表测量运动物体通过某一段路程所需要的时间,若秒表走时偏快,即使测量多次,测量的时间t总是偏大为一个固定的数值,这是仪器不准确造成的误差。(2)理论误差。由于测量所依据的理论公式本身的近似性,或实验条件不能达到理论公式所规定的要求,或测量方法等所带来的误差;(3)观测误差。由于观测者本人生理或心理特点造成的误差。通常与观测者反应和观察习惯有关,它因人而异,并与观测者当时的精神状态有关。例如,按秒表时习惯提前或滞后。在任何一项实验工作和具体测量中,必须要想尽一切办法,最大限度的消除或减小一切可能存在的系统误差,或者对测量结果进行修正。以下介绍几种常用的方法。(1)检定修正法:指将仪器、量具送计量部门检验取得修正值,以便对某一物理量测量后进行修正。(2)替代法:指测量装置测定待测量后,在测量条件不变的情况下,用一个已知标准量替换被测量来减小系统误差。(3)异号法:指对实验时在两次测量中出现符号相反的误差,采取平均值后消除的一种方法。例如在外界磁场作用下,仪表读数会产生一个附加误差,若将仪表转动180°再进行一次测量,外磁场将对读数产生相反的影响,引起负的附加误差。两次测量结果平均,正负误差可以抵消,从中可以减小系统误差。2)随机误差是指在实际测量条件下,多次测量同一量时,误差时大时小、时正时负,以不可预定方式变化着的误差叫做随机误差,也叫偶然误差。当测量次数很多时,随机误差就显示出明显的规律性。实践和理论都已证明,随机误差服从一定的统计规律(正态分布,如图1),其特点是:绝对值小的误差出现的概率比绝对值大的误差出现的概率大(单峰性);绝对值相等的正负误差出现的概率相同(对称性);绝对值很大的误差出现的概率趋于零(有界性);误差的算术平均值随着测量次数的增加而趋于零(抵偿性)。因此,增加测量次数可以减小随机误差,但不能完全消除。引起随机误差的原因很多,它与仪器精密度和观察者感官灵敏度有关。如仪器显示数值的估计读数位偏大和偏小;测量环境扰动变化以及其它不能预测不能控制的因素,如空间电磁场的干扰等。由于测量者过失、实验方法不合理、用错仪器、操作不当、读错数值或记错数据等引起的误差,是一种人为的过失误差,不属于测量误差。过失误差是可以避免的。6、随机误差的估算设在等精度测量中,一组n次测量的值分别为:x1,x2,……xn,这组测量值称为测量列。误差理论证明,测量列中某次测量值的标准偏差为112nxxSniixx(2)其意义表示某次测量值的随机误差在xx~之间的概率为68.3%。(2)式称为贝塞尔公式。7、算术平均值的标准偏差当测量次数n有限,其算术平均值的标准偏差为112nnxxnniixx(3)其意义是测量平均值的随机误差在xx~之间的概率为68.3%。或者说,待测量的真值在f(ε)-σ0σε图14xxx~x范围内的概率为68.3%。这个概率叫置信概率,也叫置信度,用p表示,即p=0.683。x是反映了平均值接近真值的程度。但不要误认为真值一定就会落在xx~之间。类似地,待测量的真值在xxx~x22范围内的概率为95.4%,此时的置信度p=0.954。8、t分布由于在实际工作中,测量次数n不可能趋于无穷。当测量次数较少时,随机误差服从的规律不是正态分布,而是t分布。t分布的曲线比正态分布的要平坦,两者的分布函数不同,n较小时,t分布偏离正态分布较多,n较大时,趋于正态分布。如图2所示。对t分布,只在公式(3)的基础上乘以一个t因子,即112Annxxttniix(4)或112Anxxntnii=xSnt(5)t值是与测量次数等有关的,如下表是当p=0.95的t值:由上表可知,当5≤n≤10时,n/t接近1,由(5)式可知ΔA≈Sx。对教学实验,测量次数一般取5~10次,所以可用(2)式作为估算偏差的公式。9、异常数据的剔除剔除测量列中异常数据的标准有几种,有3x准则、肖维准则、格拉布斯准则等。下面是3x准则:统计理论表明,测量值的偏差超过3x的概率已小于1%。因此,可以认为偏差超过3x的测量值是其他因素或过失造成的,为异常数据,应当剔除。剔除的方法是将多次测量所得的一系列数据,算出各测量值的偏差ix和标准偏差x,把其中最大的jx与3x比较,若jx>3x,则认为第j个测量值是异常数据,舍去不计。剔除jx后,对余下的各测量值重新计算偏差和标准偏差,并继续审查,直到各个偏差均小于3x为止。二、测量结果的评定和不确定度(一)、不确定度的含义在物理实验中,因真值得不到,测量误差也就不能肯定。为此,1992年国际计量大会以及四个国际组织制定了《测量不确定度表达指南》。1993年此《指南》经国际理化等组织批准实施。对一个物理实验的具体数据来说,不确定度是指测量值(近真值)附近的一个范围,测量值与真值之差(误差)可能落于其中。它是对误差的一种量化估计,是对测量结果可信赖程度的具体评定。不确定度小,测量结果可信赖程度高;不确定度大,测量结果可信赖程度低。所以用不确定度的概念对测量数据做n3456789101520≥100t4.303.182.782.572.452.362.312.262.142.09≤1.97n/t2.481.591.2041.05.9260.8340.7700.7150.5530.467≤0.139正态分布εf(ε)t分布0图25出评定比用误差来描述更合理。(二)、测量结果的表示和不确定度1、测量结果的不确定度在做物理实验时,要求表示出测量的最终结果。即xx(单位)(6)式中x为待测量;x是测量的近似真实值,是总的不确定度,三者的数量级、单位要相同。简单起见,不确定度一般保留一位有效数字,多余的位数一律进位。x的末尾数与不确定度的所在位数对齐。这种表达形式反应了三个基本要素:测量值、不确定度和单位,缺一不可,否则就不能全面表达测量结果。2、相对不确定度相对不确定度定义为%xE100(7)有时候还需要将测量结果与公认值或理论值进行比较(百分偏差):%xxxE1000理理(8)x理可以是公认值,或高一级精密仪器的测量值。相对不确定度一般取2