Fluent湍流模型选取的准则湍流模型选取的准则:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制。FLUENT软件中提供以下湍流模型:1Spalart-Allmaras模型;2k-ε模型;3k-ω模型;4雷诺应力模型(RSM);5大涡模拟模型(LES)。1Spalart-Allmaras模型应用范围:Spalart-Allmaras模型是设计用于航空领域的,主要是墙壁束缚(wall-bounded)流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。在湍流模型中利用Boussinesq逼近,中心问题是怎样计算漩涡粘度。这个模型被Spalart-Allmaras提出,用来解决因湍流动粘滞率而修改的数量方程。模型评价:Spalart-Allmaras模型是相对简单的单方程模型,只需求解湍流粘性的输运方程,不需要求解当地剪切层厚度的长度尺度;由于没有考虑长度尺度的变化,这对一些流动尺度变换比较大的流动问题不太适合;比如平板射流问题,从有壁面影响流动突然变化到自由剪切流,流场尺度变化明显等问题。Spalart-Allmaras模型中的输运变量在近壁处的梯度要比k-ε中的小,这使得该模型对网格粗糙带来数值误差不太敏感。Spalart-Allmaras模型不能断定它适用于所有的复杂的工程流体。例如不能依靠它去预测均匀衰退,各向同性湍流。2k-ε模型①标准的k-ε模型:最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-ε模型自从被LaunderandSpalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、合理的精度。它是个半经验的公式,是从实验现象中总结出来的。湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。②RNGk-ε模型:RNGk-ε模型来源于严格的统计技术。它和标准k-ε模型很相似,但是有以下改进:a、RNG模型在ε方程中加了一个条件,有效的改善了精度。b、考虑到了湍流漩涡,提高了在这方面的精度。c、RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-ε模型使用的是用户提供的常数。d、标准k-ε模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的作用取决于正确的对待近壁区域。这些特点使得RNGk-ε模型比标准k-ε模型在更广泛的流动中有更高的可信度和精度。③可实现的k-ε模型:可实现的k-ε模型是近期才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。可实现的k-ε模型和RNGk-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以现在还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。模型评价:可实现的k-ε模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度,这是因为可实现的k-ε模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-ε模型。由于这些修改,把它应用于多重参考系统中需要注意。3k-ω模型①标准的k-ω模型:标准的k-ω模型是基于Wilcoxk-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。标准的k-ε模型的一个变形就是SSTk-ω模型,它在FLUENT中也是可用的应用范围:Wilcoxk-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。②SSTk-ω模型:SSTk-ω模型由Menter发展,以便使得在广泛的领域中可以独立于k-ε模型,使得在近壁自由流中k-ω模型有广泛的应用范围和精度。为了达到此目的,k-ε模型变成了k-ω公式。SSTk-ω模型和标准的k-ω模型相似,但有以下改进:·SSTk-ω模型和k-ε模型的变形增长于混合功能和双模型加在一起。混合功能是为近壁区域设计的,这个区域对标准的k-ω模型有效,还有自由表面,这对k-ε模型的变形有效。·SSTk-ω模型合并了来源于ω方程中的交叉扩散。·湍流粘度考虑到了湍流剪应力的传播。·模型常量不同。这些改进使得SSTk-ω模型比标准k-ω模型在广泛的流动领域中有更高的精度和可信度。③两个模型的对比两种模型有相似的形式,有方程k和ω。SST和标准模型的不同之处是:·从边界层内部的标准k-ω模型到边界层外部的高雷诺数的k-e模型的逐渐转变。·考虑到湍流剪应力的影响修改了湍流粘性公式。