习题331按(x4)的幂展开多项式x45x3x23x4解设f(x)x45x3x23x4因为f(4)56f(4)(4x315x22x3)|x421f(4)(12x230x2)|x474f(4)(24x30)|x466f(4)(4)24所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(xfxfxfxffxf5621(x4)37(x4)211(x4)3(x4)42应用麦克劳林公式按x幂展开函数f(x)(x23x1)3解因为f(x)3(x23x1)2(2x3)f(x)6(x23x1)(2x3)26(x23x1)230(x23x1)(x23x2)f(x)30(2x3)(x23x2)30(x23x1)(2x3)30(2x3)(2x26x3)f(4)(x)60(2x26x3)30(2x3)(4x6)360(x23x2)f(5)(x)360(2x3)f(6)(x)720f(0)1f(0)9f(0)60f(0)270f(4)(0)720f(5)(0)1080f(6)(0)720所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(xfxfxfxfxfxffxf19x30x345x330x49x5x63求函数xxf)(按(x4)的幂展开的带有拉格朗日型余项的3阶泰勒公式解因为24)4(f4121)4(421xxf32141)4(423xxf328383)4(425xxf27)4(1615)(xxf所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(xfxfxfxffx4732)4()]4(4[1615!41)4(5121)4(641)4(412xxxxx(01)4求函数f(x)lnx按(x2)的幂展开的带有佩亚诺型余项的n阶泰勒公式解因为f(x)x1f(x)(1)x2f(x)(1)(2)x3nnnnxnxnxf)!1()1()1()2)(1()(1)(kkkkf2)!1()1()2(1)((k12n1)所以])2[()2(!)2()2(!3)2()2(!2)2()2)(2()2(ln)(32nnnxoxnfxfxfxffx])2[()2(2)1()2(231)2(221)2(212ln13322nnnnxoxnxxx5求函数xxf1)(按(x1)的幂展开的带有拉格朗日型余项的n阶泰勒公式解因为f(x)x1f(x)(1)x2f(x)(1)(2)x31)1()(!)1()()2)(1()(nnnnxnxnxf!)1(!)1()1(1)(kkfkkk(k12n)所以)1(!3)1()1(!2)1()1)(1()1(132xfxfxffx1)1()()1()!1()()1(!)1(nnnnxnfxnf12132)1()]1(1[)1(])1()1()1()1(1[nnnnxxxxxx(01)6求函数f(x)tanx的带有拉格朗日型余项的3阶麦克劳林公式解因为f(x)sec2xf(x)2secxsecxtanx2sec2xtanxf(x)4secxsecxtan2x2sec4x4sec2xtan2x2sec4xf(4)(x)8sec2xtan3x8sec4xtanx8sec4xtanxxxx52cos)2(sinsin8f(0)0f(0)1f(0)0f(0)2所以4523)(cos3]2)()[sinsin(31tanxxxxxxx(01)7求函数f(x)xex的带有佩亚诺型余项的n阶麦克劳林公式解因为f(x)exxexf(x)exexxex2exxexf(x)2exexxex3exxexf(n)(x)nexxex;f(k)(0)k(k12n)所以)(!)0(!3)0(!2)0()0()0()(32nnnxxoxnfxfxfxffxe)()!1(1!2132nnxoxnxxx8验证当210x时按公式62132xxxex计算ex的近似值时所产生的误差小于001并求e的近似值使误差小于001解因为公式62132xxxex右端为ex的三阶麦克劳林公式其余项为43!4)(xexR所以当210x时,按公式62132xxxex计算ex的误差01.00045.0)21(!43|!4||)(|42143xexR645.1)21(61)21(212113221ee9应用三阶泰勒公式求下列各数的近似值并估计误差(1)330(2)sin18解(1)设3)(xxf则f(x)在x027点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(xxxxf4311338)27)(8180(!41)27)(272710(!31xx(介于27与x之间)于是33823532333)272710(!313)2792(!2132731273010724.3)3531311(31063其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|R(2)已知43!4sin!31sinxxxx(介于0与x之间)所以sin183090.0)10(!311010sin3其误差为44431003.2)10(!46sin|)10(!4sin||)10(|R10利用泰勒公式求下列极限(1))23(lim434323xxxxx(2))]1ln([coslim2202xxxexxx(3)2220sin)(cos1211lim2xexxxxx解(1)tttxxxxxxxtxx430434343232131lim12131lim)23(lim因为)(1313tott)(211214tott所以23])(23[lim)](211[)](1[lim)23(lim00434323ttottottotxxxxttx(2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([coslim1344244202202xxxxxxxoxxxoxxxxxex010)1ln(1)(121lim11340exxxoxxx(3)2442442442202220))](!211())(!41!211[()](!43!211[211limsin)(cos1211lim2xxoxxxoxxxoxxxxexxxxxx12123!43)(241123)(!43lim)(241123)(!43lim2424404264440xxoxxxoxoxxxxoxxx