第七章特定水体的污染及自净

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第七章特定水体的污染及自净第一节水体自净水体是地面水(河流、湖泊、沼泽、水库)、地下水和海洋的总称。它不仅仅指水,还包括水中的溶解物、悬浮物、水生生物和底泥等,是一个完整的生态系统。在环境污染研究中,“水”和“水体”是两个不相同的概念,应当区别开来。例如,重金属污染物易于从水中转移到底泥里,水中的重金属含量一般都不高,若着眼于水,似乎水污染并不严重,但是从整个水体看,污染就可能很严重。可见,水体污染不仅仅是水污染,还包括底泥污染和水生生物污染。水体具有消纳一定量的污染物质,使自身的质量保持洁净的能力,人们常常称之为水体的自净。水体的自净过程十分复杂,它包括了物理过程,如稀释、扩散、挥发、沉淀等;化学和物理化学过程,如氧化、还原、吸附、凝聚、中和等反应;以及生物和生物化学过程,如微生物对有机物的分解代谢,不同生物群体的相互作用等。这几种过程互相交织在一起,可以使进入水体的污染物质迁移、转化,使水体水质得到改善。水体不同,自净能力也不同。一旦进入水体的污染物造成了该水体中某些物质(特别是对生物有毒性的或造成水体水质恶化的物质)超过了水体的本底值或水体的自净能力,而使得该水体部分或全部失去了它的功能或用途,那么水污染就发生了。地球上的各类水体有其自身的形态特征及环境条件,影响着水中化学物质的组成及污染物质的迁移转化,使各类水体的污染与自净各具特点。以下将分别介绍几种对典型水体的污染及自净机理。第二节河流的污染与自净河流是地面水系的主体,与人类的关系十分密切。它是人类主要的水源,除了为人类提供生产和生活用水外,河流的功能还包括:航运、灌溉、补给地下水、水产养殖、观赏以及作为地表径流和废水的最终受纳体。一、河流的水质特征与湖泊、海洋相比,河流的水量和水质随季节的变化较大,水体更新期短,水质随枯水期和丰水期的不断交替,更新也快。水质遭受污染后,易于稀释扩散和自净。此外,由于水流与地表物质接触时间不长,水面蒸发面小,因此与其它陆地水体相比河水矿化度较低。天然河水的化学成分受到降水、地形、地质、水生生物以及水流补给源等多方面因素的控制,河水不仅与地表水及大气水之间有交换过程,而且与地下水也相互关联,因此河水的化学成分复杂多样,沿程变化及时间变化强烈。河流不仅是人类社会主要的供给水源,也是人类活动频繁的场所,它被污染的机会多,几乎各种污染源中的污染物,通过各种途径都可进入河流,并向下游汇集。而它一旦遭受污染就会严重影响到人类生活和工农业生产。二、河流的污染及其特点地面河流与大气、土壤(或岩石圈)紧密相连,又与人类的生活、生产直接相关,其污染物质来源于:大量生活污水和工业废水的直接排放;地表径流将地表上的污染物质大量携带进河水中;大气中的污染物质随降雨而进入河流;水上航运过程中的油脂泄漏等。随着城市化和工业化的进程,河流作为废水最主要和直接的受纳体的负担日益加重,导致了严重的河流污染。历史上城市废水对河流、湖泊等水体的污染大致经历了三个时期:(1)病原污染期在工业尚不发达时,城市废水主要是生活污水,富含有机质、微生物污染物等,以此作为饮用水源,则由于病原菌的存在很容易导致传染病的流行,这个时期的污染就称为病原污染期。例如,横贯英国的泰晤士河在19世纪之前,还是河水清澈,碧波荡漾,水中鱼虾成群,河面飞鸟翱翔。但随着工业革命的兴起及两岸人口的激增,每天排放的大量生活污水和工业废水使泰晤士河迅速变得污浊不堪,水质严重恶化。到上世纪50年代末,泰晤士河的污染进一步恶化,水中的含氧量几乎等于零,除少数鳝鱼外,其它鱼类几乎绝迹。美丽的泰晤士河变成—条死河,肮脏的河水还成为沿岸疾病流行的祸首,从1849年到1954年,滨河地区约有25000人死于霍乱。(2)总体污染期随着工业规模的不断扩大和快速发展,排入地面水体中的工业废水的比重不断增加,造成河、湖水中的悬浮物及生化需氧量越来越高,使水体中溶解氧耗尽,水生生物灭绝,生态平衡被破坏,达到总体污染的程度,这个时期可称为总体污染期。(3)新污染期工业生产和科学技术的进一步发展,特别是石油、化工、核能等新型工业的出现,生产中排放出的新污染物质和毒物不断增多,水质更趋复杂,这就是所谓新污染期。目前一些发达国家正处于新污染期。发达国家在20世纪50年代就进入了河湖严重污染的总体污染期。他们经过二十多年的努力,治理了一些严重污染的河流湖泊,基本上控制了以有机物为主的水污染。而许多发展中国家,目前水体污染的状况仍很严重,一些国家甚至还处于病原污染期,直接威胁着人们的身体健康。近些年来,随着我国国民经济的快速发展、城市人口的迅速增加,以及农业生产中农药化肥的大量使用以及乡镇企业规模的不断扩大,对地面河流的污染日益严重。根据我国1998年对全国109700公里河流进行的评价,我国河流长度有70.6%被污染,其中有机污染是一个不可忽视的因素。相对于其它水体的污染来说,河流的污染易于发生,但也比较容易自净恢复;河流的污染途径多,污染物种类复杂,但耗氧有机物的污染最具普遍性。同时,河流可能穿逾不同的社会环境和自然地理环境,使不同河段的纳污状况和自净能力有明显差异。因此,对河流的污染和自净规律必须按不同河段进行研究。三、河流水体的自净机理河流的自净作用是指河水中的污染物浓度在随河水向下游流动过程中在多种机理的作用下自然降低的过程。废水中污染物种类繁多,进入河流后消除的机理也是多种多样的。从净化机制来看,污染物自行消除的过程可分为以下几类:1.物理净化过程物理净化是指由于稀释、扩散、沉淀等作用而使河水中的污染物浓度降低的过程。其中稀释作用是一项重要的物理净化过程。河水中的悬浮固体,在重力作用下,逐渐沉降到河底,成为淤泥。而河流对溶解态污染物的稀释能力,是因为污染物进入河流后同时存在两种运动形式:一是由于受河水的推动而沿水流方向的运动,这种水流输运污染物的方式,称为推流;二是由于污染物质的进入,在水流中产生了浓度差异,污染物将由高浓度处向低浓度处迁移,这一污染物的运动形式称为扩散。污染物进入水体后正是在推流和扩散这两种同时存在而又相互影响的运动形式的作用下,才使得其浓度从排放口开始往下游逐渐降低,得以不断净化稀释。2.化学净化过程化学净化是指污染物进入水体后在化学(或物理化学)作用下而使其浓度降低的过程。水体中进行的化学或物理化学净化过程,包括氧化-还原、酸碱中和、沉淀-溶解、分解-化合、吸附-解吸、凝聚-胶溶等。例如,水体中的低价金属离子(如二价铁、二价锰等),可通过氧化作用生成难溶的高价金属氢氧化物而沉淀下来;六价铬可通过还原作用而转化为毒性较小的三价铬;水中的粘土矿物质及腐殖酸胶体颗粒,也可通过吸附、凝聚、沉降等作用转移至底泥中。3.生物净化过程生物净化是指在微生物的作用下,有机污染物逐渐分解、氧化使其含量逐渐降低的过程。进入水体的有机污染物的净化,主要有赖于生物化学过程。在这个过程中微生物消耗或吸收了水中的污染物,使得水体向净化的方向转变。造成这一转变的生物化学过程常被称作生物降解。生物降解是指在微生物作用下,有机化合物转化为低级有机物和简单无机物的过程。生物降解分为好氧生物降解和厌氧生物降解。前者是指在溶解氧(氧分子)存在的条件下,由好氧微生物完成的生物化学反应;后者是指在氧气不足或无氧气的情况下,由厌氧微生物完成的生物化学反应。有的微生物既能在有氧条件下进行生物化学反应,也能在无氧或缺氧条件下进行生物化学反应,称为兼性微生物。从反应的结果看,好氧生物降解与厌氧生物降解的区别是,前者的产物是稳定的无机物(如CO2、H2O等),后者的产物则不完全是上述稳定的无机物,而是还包括甲烷、乙酸等有机物和NH3等氧化不彻底的无机物。在未受污染的水体中,水中都有一定浓度的溶解氧。但是,当水体受到有机物的污染后,水体中的微生物就会大量繁殖起来。由于好氧微生物比厌氧微生物生长快,所以好氧微生物首先发展壮大。当好氧微生物发展到一定数量,它们消耗水中溶解氧的速率有可能超过空气中的氧气向水中溶解的速率(称为复氧速率)。一旦如此,水中的溶解氧浓度就开始迅速下降,直到浓度降到接近零,使水体呈现无氧或缺氧状态。在缺氧或无氧状态下,好氧微生物的生长受到抑制,而厌氧微生物则大量繁殖起来,继承了大部分的自净工作。实际上,当一个水体受到较严重的有机污染时,水中的溶解氧是随水的深度变化的,表层水体的溶解氧较高,越往深处溶解氧越低,直至厌氧状态。因此,好氧微生物集中在水体的上部,阻止了从空气中补充进来的溶解氧向下层的传递,从而维持下层水体的厌氧状态,使得厌氧微生物集中在水体的底部。一般情况下,在天然河流中,对于有机污染物的自净过程好氧生物降解起主要作用,生化过程中消耗的溶解氧,可从大气及水生植物的光合作用中得到及时补充。图7-1给出了正常受污河段生物净化的好氧分解过程:首先,在水中溶解氧的参与下腐生细菌将可生化降解的胶态和溶解图7-1河流净化的好氧分解过程态的有机物分解为简单、稳定的无机物,如水、二氧化碳、氨氮和磷酸盐等,进而再在亚硝化细菌和硝化细菌的作用下,将氨氮相继转化为亚硝酸盐和硝酸盐。在这一过程中要消耗水中的溶解氧,当其浓度降低后,大气中的氧可通过气水界面向水体中扩散进行补充,微生物也在分解有机污染物的过程中不断增殖,促使好氧分解过程不断进行,直至污染物完全被分解,水体得以净化为止。4.细菌的自然死亡过程污染物进入河流后,由于环境的变化(如基质减少、日光杀菌、水温及pH不适、化学毒物存在、吞食细菌的原生动物存在等),使污水中带来的细菌、病原菌、病毒等逐渐死亡,从而使水体在一定程度上得到自然净化。如从河流中形成自净作用的场所上看,又可以分成以下几类:(1)河水与大气间的自净作用这种作用表现为水体中气态物质向大气中的扩散,如河水中的CO2、H2S等气体的释放。(2)河水中的自净作用污染物质在河水中的稀释、扩散、氧化、还原,或由于水中微生物作用而使污染物质发生生物化学分解,以及放射性污染物质的蜕变等等。(3)河水与底质间的自净作用这种作用表现为河水中悬浮物质的沉淀、污染物质被河底淤泥吸附等等。(4)河流底质中的自净作用由于底质中微生物的作用使底质中的有机污染物质发生分解等。由此可见,河流自净作用是包含着十分广泛的内容的,而在实际上这些作用又常相互交织在一起,因此在具体研究工作中必然要有所偏重。目前在河流自净作用的研究上,多侧重于狭义的自净作用,即主要研究河水中的有机污染物质由于微生物而形成的生物化学分解作用。从自净作用产生的场所上看,目前则是以研究在水中发生的自净作用为主。四、河流水体的自净规律对接受以生活污水为主的河流自净过程,着重讨论河流水体的混合稀释模型和氧垂曲线模型。1.混合稀释模型稀释作用的实质是污染物在水体中因扩散而降低了浓度,稀释并不能改变,也不能去除污染物质。但是对于特定水体的生态系统而言,当污染物浓度降低到一定程度后,其对该水生环境或从某种使用角度出发来考虑的水质的影响也就很小了,在一定程度上也就能够满足环境或人类的要求,也具有实际意义。污染物质进入水体后,存在两种运动形式,一是由于水流的推动而产生的沿着水流前进方向的运动,称为推流或平流;另一是由于污染物质在水中浓度的差异而形成的污染物从高浓度处向低浓度处的迁移,这一运动被称为扩散。废水排入河流后,由于推流和扩散作用,逐渐与河水相混合,污染物的浓度逐渐降低。推流运动可以式(7-1)表示1Qvc(7-1)式中Q1—污染物质的推流量,mg/(m2·s);v—河流流速,m/s;c—污染物质浓度,mg/m3。由式(7-1)可见,河流流速越快,单位时间内通过单位面积输送的污染物质数量(污染物质推流量)越多。扩散运动的表示式为:2dcQkdx(7-2)式中Q2-污染物质扩散量,mg/(m2·s);dcdx-单位长度上的浓度变化值,mg/(m3·m),x-为扩散路程长度,由于x值增大时c值相应减小,故dcdx为负值。k—扩散系数,m2/s。它与河流的弯曲程度、河床底部粗糙程度以及流速、水源等因素有关。由式(7-2)可见,污染物质的扩散量主要决定于水体中污染物质的浓度差及水体的扩散系数。推流

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功