传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。问题提出请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?关键字:传染病模型、建模、流行病摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。模型1在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数,方程(1)的解为结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别健康人和病人这两种人。模型2SI模型假设条件为1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者即健康人(Susceptible)(S)和已感染者即病人(Infective)(i)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。2.每个病人每天有效接触的平均人数是常数,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。方程(5)是Logistic模型。它的解为这时病人增加的最快,可以认为是医院的门诊量最大的一天,意味着传染病高潮的到来,是医疗卫生部门应该关注的时刻。况。,这显然不符合实际情将被传染,全变为病人即所有人终时到来。第二,当可以推迟传染病高潮的健设施、提高卫生水平以改善保越小卫生水平越高。所,表示该地区的卫生水平成反比,因为日接触率与,1ittm其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。模型3SIS模型有些病毒人在感染并治愈之后,没有免疫性,即还有可能再被感染。模型假设在模型二假设条件的前提下我们再增加一个假设条件3.病人每天治愈的比例为日治愈率。一个感染期内每个病人的有效接触人数模型构成于是有Ni(t)-t(t)i(t)i(t)-t)i(tNNs(8)可得微分方程ii(0)i-i)-(1idtdi0(9)得到)1/-(1--diiidt(10)模型4SIR模型大多数传染者如天花流感肝炎麻疹等治愈后均有很强的免疫力,所以冰域的人即非易感者,也非感病者,因此他们将被移除传染系统,我们称之为移除者,记为R类SIR模型是指易感染者被传染后变为感染住,感病者可以被治愈,并会产生免疫力,变为移除者。人员流动图为:S-I-R。假设:1总人数为常数N,且i(t)+s(t)+r(t)=1;2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。3单位时间内病愈免疫的人数与但是的病人人数成正比,比例系数l。称为恢复系数。在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:模型结构siλsirμi在假设1中显然有:s(t)+i(t)+r(t)=1(1)对于病愈免疫的移出者的数量应为rtdNNid(2)不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s(0s>0),0i(0i>0),0r=0.SIR基础模型用微分方程组表示如下:didtdsdtdrdtsiisii(3)s(t),i(t)的求解极度困难,在此我们先做数值计算来预估计s(t),i(t)的一般变化规律。数值计算在方程(3)中设λ=1,μ=0.3,i(0)=0.02,s(0)=0.98,用MATLAB软件编程:functiony=ill(t,x)a=1;b=0.3;y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];ts=0:50;x0=[0.20,0.98];[t,x]=ode45('ill',ts,x0);plot(t,x(:,1),t,x(:,2))pauseplot(x(:,2),x(:,1))输出的简明计算结果列入表1。i(t),s(t)的图形以下两个图形,i~s图形称为相轨线,初值i(0)=0.02,s(0)=0.98相当于图2中的P0点,随着t的增,(s,i)沿轨线自右向左运动.由表1、图1、图2可以看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t→∞,i→0,s(t)则单调减少,t→∞,s→0.0398.并分析i(t),s(t)的一般变化规律.表1i(t),s(t)的数值计算结果t012345678i(t)0.02000.03900.07320.12850.20330.27950.33120.34440.3247s(t)0.98000.95250.90190.81690.69270.54380.39950.28390.2027t91015202530354045i(t)0.28630.24180.07870.02230.00610.00170.00050.00010s(t)0.14930.11450.05430.04340.04080.04010.03990.03990.03981相轨线分析我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。D={(s,i)|s≥0,i≥0,s+i≤1}在方程(3)中消去td并注意到σ的定义,可得11isddsσ00|ssii(5)所以:11isddsσ00i11sisisddsσ(6)利用积分特性容易求出方程(5)的解为:0001()lnsisiss(7)在定义域D内,(6)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随着时间t的增加s(t)和i(t)的变化趋向图3下面分析s(t),i(t)和r(t)的变化情况(t→∞时它们的极限值分别记作s,i和r).1.不论初始条件s0,i0如何,病人将消失,即:0,ti2.最终未被感染的健康者的比例是,在(7)式中令i=0得到,是方0001ln0ssiss在(0,1/σ)内的根.在图形上是相轨线与s轴在(0,1/σ)内交点的横坐标3.若0s1/σ,则开始有11isdodsσ,i(t)先增加,令11isddsσ=0,可得当s=1/σ时,i(t)达到最大值:然后s1/σ时,有11isdodsσ,所以i(t)减小且趋于零,s(t)则单调减小至s,如图3中由P1(0s,0i)出发的轨线4.若0s1/σ,则恒有110isddsσ,i(t)单调减小至零,s(t)单调减小至s,如图3中由P2(s0,i0)出发的轨线可以看出,如果仅当病人比例i(t)有一段增长的时期才认为传染病在蔓延,那么1/σ是一个阈值,当0s1/σ(即σ1/s0)时传染病就会蔓延.而减小传染期接触数σ,即提高阈值1/σ使得0s≤1/σ(即σ≤1/0s),传染病就不会蔓延(健康者比例的初始值0s是一定的,通常可认为0s接近1)。并且,即使0s1/σ,σ减小时,s增加(通过作图分析),mi降低,也控制了蔓延的程度.我们注意到在σ=λμ中,人们的卫生水平越高,日接触率λ越小;医疗水平越高,日治愈率μ越大,于是σ越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.从另一方面看,1/ss是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被s个健康者交换.所以当01/s即01s时必有.既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。群体免疫和预防:根据对SIR模型的分析,当01/s时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/σ变大以外,另一个途径是降低0s,这可以通过比如预防接种使群体免疫的办法做到.忽略病人比例的初始值0i有001sr,于是传染病不会蔓延的条件01/s可以表为这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)就可以制止传染病的蔓延。这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实际上这是很难做到的。据估计当时印度等国天花传染病的接触数σ=5,至少要有80%的人接受免疫才行。据世界卫生组织报告,即使花费大量资金提高0r,也因很难做到免疫者的均匀分布,使得天花直到1977年才在全世界根除。而有些传染病的σ更高,根除就更加困难。模型验证:上世纪初在印度孟买发生的一次瘟疫中几乎所有病人都死亡了。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了rtdd的实际数据,Kermack等人用这组数据对SIR模型作了验证。首先,由方程(2),(3)可以得到srtddsisisddt1srddst上式两边同时乘以d可,两边积分得所以:()0()rtstse(8)再0(1)(1)rrtdirsrsed(9)当1/r时,取(13)式右端reTaylor展开式的前3项得:22000(1)2rtsrdrssrd(10)在初始值0r=0下解高阶常微分方程得:0201()(1)()2trtsths(11)其中222000(1)2ssi,01sth从而容易由(10)式得出:然后取定参数s0,σ等,画出(11)式的图形,如图4中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。模型的应用与推广:根据传染病的模型建立研究进而推广产生了传染病动力学模型。传染病动力学[1]是对进行理论性定量研究的一种重要方法,是根据种群生长的特性,疾病的发生及在种群内的传播,发展规律,以及与之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力学性态的定性,定量分析和数值模拟,来分析疾病的发展过程,揭示流行规律,预测变化趋势,分析疾病流行的原因和关键。对于2003年发生的SARS疫情,国内外学者建立了大量的动力学模型研究其传播规律和趋势,研究各种隔离预防措施的强度对控制流行的作用,为决策部门提供参考.有关SARS传播动力学研究多数采用的是SIR或SEIR模型.评价措施效果或拟合实际流行数据时,往往通过改变接触率和感染效率两个参数的值来实现.石耀霖[2]建了SARS传播的系统动力学模型,以越南的数据为参考,进行了MonteCarlo实验,初步结果表明,感染率及其随时间的变化是影响SARS传播的最重要因素.蔡全才[3]建立了可定量评价SARS干预措施效果的传播动力学模型,并对北京的数据进行了较好的拟合.参考文献:[