11紫外可见分光光度法174

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十一章紫外可见光分光光度法利用被测物质的分子对紫外-可见光选择性吸收的特性而建立起来的方法。§11—1分子吸收光谱基本概念一、分子吸收光谱的产生二、分子吸收光谱类型三.有机化合物的紫外、可见吸收光谱四.溶剂对紫外、可见吸收光谱的影响五.吸收曲线(吸收光谱)及最大吸收波长六.光的选择性吸收与物质颜色的关系一.分子吸收光谱的产生在分子中存在着电子的运动,以及组成分子的各原子间的振动和分子作为整体的转动。分子的总能量可以认为等于这三种运动能量之和。即:E分子=E电子+E振动+E转动分子中的这三种运动状态都对应有一定的能级。即在分子中存在着电子能级、振动能级和转动能级。这三种能级都是量子化的。其中电子能级的间距最大(每个能级间的能量差叫间距或能级差),振动能级次之,转动能级的间距最小。如果用△E电子,△E振动以及△E转动表示各能级差,则:△E电子>△E振动>△E转动由于组成分子能量的几部分都具有一定的能级,所以分子也具有一定的能级,如图是双原子分子的能级图:由图可见,在每一个电子能级上有许多间距较小的振动能级,在每一个振动能级上又有许多间距更小的转动能级。由于这个原因,处在同一电子能级的分子,可能因振动能量不同而处于不同的能级上。同理,处于同一电子能级和同一振动能级上的分子,由于转动能量不同而处于不同的能级上。当用光照射分子时,分子就要选择性的吸收某些波长(频率)的光而由较低的能级E跃迁到较高能级E‘上,所吸收的光的能量就等于两能级的能量之差:△E=E’-E其光的频率为:γ=△E/h或光的波长为:λ=hc/△E由于分子选择性的吸收了某些波长的光,所以这些光的能量就会降低,将这些波长的光及其所吸收的能量按一定顺序排列起来,就得到了分子的吸收光谱。二、分子吸收光谱类型远红外光谱、红外光谱及紫外-可见光谱三类。分子的转动能级跃迁,需吸收波长为远红外光,因此,形成的光谱称为转动光谱或远红外光谱。分子的振动能级差一般需吸收红外光才能产生跃迁。在分子振动时同时有分子的转动运动。这样,分子振动产生的吸收光谱中,包括转动光谱,故常称为振-转光谱。由于它吸收的能量处于红外光区,故又称红外光谱。电子的跃迁吸收光的波长主要在真空紫外到可见光区,对应形成的光谱,称为电子光谱或紫外-可见吸收光谱。三.有机化合物的紫外—可见吸收光谱(一)、跃迁类型主要有σ→σ*、n→σ*、n→π*、π→π*E*n*n***nπ→π*a.σ→σ*跃迁主要发生在真空紫外区。b.π→π*跃迁吸收的波长较长,孤立的π→π*跃迁一般在200nm左右C、n→π*跃迁一般在近紫外区(200~400nm),吸光强度较小,d.n→σ*跃迁吸收波长仍然在150~250nm范围,因此在紫外区不易观察到这类跃迁。在以上几种跃迁中,只有-*和n-*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。(二)、常用术语1,生色团:有机物中含有n→π*或π→π*跃迁的基团;2,助色团:助色团是指带有未成键n电子的基团;可使生色团吸收峰向长波方向移动并提高吸收强度的一些杂原子官能团,常见助色团助色顺序为:-F-CH3-Br-OH-OCH3-NH2-NHCH3-N(CH3)2-NHC6H5-O-3,红移与蓝移(紫移)某些有机化合物经取代反应后,引入含有未共享电子对的基团之后,吸收峰的波长将向长波方向移动,这种效应称为红移效应。在某些生色团如羰基的碳原子一端引入一些取代基之后,吸收峰的波长会向短波方向移动,这种效应称为蓝移(紫移)效应。如-R,-OCOR,四.溶剂对紫外、可见吸收光谱的影响改变溶剂的极性,会引起吸收带形状的变化。改变溶剂的极性,还会使吸收带的最大吸收波长发生变化。下表为溶剂对一种丙酮紫外吸收光谱的影响。正己烷CHCl3CH3OHH2O*230238237243n*329315309305由于溶剂对电子光谱图影响很大,因此,在吸收光谱图上或数据表中必须注明所用的溶剂。与已知化合物紫外光谱作对照时也应注明所用的溶剂是否相同。在进行紫外光谱法分析时,必须正确选择溶剂。五.吸收曲线(吸收光谱)及最大吸收波长1.吸收曲线:每一种物质对不同波长光的吸收程度是不同的。如果我们让各种不同波长的光分别通过被测物质,分别测定物质对不同波长光的吸收程度。以波长为横坐标,吸收程度为纵坐标作图所得曲线。例:丙酮max=279nm(=15)3691215200220260280320340nm300400500600700/nm350525545Cr2O72-MnO4-1.00.80.60.40.2Absorbance350Cr2O72-、MnO4-的吸收光谱2、吸收峰和最大吸收波长max吸收曲线表明了某种物质对不同波长光的吸收能力分布。曲线上的各个峰叫吸收峰。峰越高,表示物质对相应波长的光的吸收程度越大。其中最高的那个峰叫最大吸收峰,它的最高点所对应的波长叫最大吸收波长,用λmax表示。3.物质的吸收曲线和最大吸收波长的特点:1)不同的物质,吸收曲线的形状不同,最大吸收波长不同。2)对同一物质,其浓度不同时,吸收曲线形状和最大吸收波长不变,只是吸收程度要发生变化,表现在曲线上就是曲线的高低发生变化。六.光的选择性吸收与物质颜色的关系:1.可见光的颜色和互补色:在可见光范围内,不同波长的光的颜色是不同的。平常所见的白光(日光、白炽灯光等)是一种复合光,它是由各种颜色的光按一定比例混合而得的。利用棱镜等分光器可将它分解成红、橙、黄、绿、青、蓝、紫等不同颜色的单色光。白光除了可由所有波长的可见光复合得到外,还可由适当的两种颜色的光按一定比例复合得到。能复合成白光的两种颜色的光叫互补色光。/nm颜色互补光400-450紫黄绿450-480蓝黄480-490绿蓝橙490-500蓝绿红500-560绿红紫560-580黄绿紫580-610黄蓝610-650橙绿蓝650-760红蓝绿2.物质的颜色与吸收光的关系:当白光照射到物质上时,如果物质对白光中某种颜色的光产生了选择性的吸收,则物质就会显示出一定的颜色。物质所显示的颜色是吸收光的互补色。完全吸收完全透过吸收黄色光光谱示意表观现象示意复合光物质颜色吸收光物质颜色吸收光颜色波长范围(nm)颜色波长范围(nm)黄绿紫400~450紫绿560~580黄蓝450~480蓝黄580~600橙绿蓝480~490绿蓝橙600~650红蓝绿490~500蓝绿红650~760紫红绿500~560§11—2光吸收定律——朗白—比耳定律一.基本概念:当强度为I0的一定波长的单色入射光束通过装有均匀待测物的溶液介质时,该光束将被部分吸收Ia,部分反射Ir,余下的则通过待测物的溶液It,即有:I0=Ia+It+Ir如果吸收介质是溶液(测定中一般是溶液),式中反射光强度主要与器皿的性质及溶液的性质有关,在相同的测定条件下,这些因素是固定不变的,并且反射光强度一般很小。所以可忽略不记,这样:Io=Ia+It即:一束平行单色光通过透明的吸收介质后,入射光被分成了吸收光和透过光。待测物的溶液对此波长的光的吸收程度可以透光率T和吸光度A用来表示。透光率——透光率表示透过光强度与入射光强度的比值,用T来表示,计算式为:T=It/IoT常用百分比(T%)表示。吸光度——透光率的倒数的对数叫吸光度。用A表示:A=-lgT二、朗白—比耳定律:(一)定律内容:当用一束强度为Io的单色光垂直通过厚度为b、吸光物质浓度为c的溶液时,溶液的吸光度正比于溶液的厚度b和溶液中吸光物质的浓度c的乘积。数学表达式为:A=-lgT=Kbc(二)比例常数K的几种表示方法:吸收定律的数学表达式中的比例常数叫“吸收系数”,它的大小可表示出吸光物质对某波长光的吸收本领(即吸收程度)。它与吸光物质的性质、入射光的波长及温度等因素有关。另外,K的值随着b和c的单位不同而不同。下面就介绍K的几种不同的表示方法。1.吸光系数:当溶液浓度c的单位为g/L,溶液液层厚度b的单位为cm时,K叫“吸光系数”,用a表示,其单位为L/g·cm,此时:A=abc由式可知:a=A/bc,它表示的是当c=1g/L、b=1cm时溶液的吸光度。2.摩尔吸光系数:当溶液浓度c的单位为mol/L,液层厚度b的单位为cm时,K叫“摩尔吸光系数”,用ελ表示,其单位为L/mol·cm,此时:A=ελbc由此式可知:ελ=A/bc,它表示的是当c=1mol/L,b=1cm时,物质对波长为λ的光的吸光度。对于K的这两种表示方法,它们之间的关系为:ελ=aMM为吸光物质的分子量。ελ和a的大小都可以反映出吸光物质对波长为λ的单色光的吸收能力。但更常用和更好的是用ελ来表示吸光物质对波长为λ的光的吸收能力。摩尔吸光系数越大,表示物质对波长为λ的光的吸收能力越强,同时在分光光度法中测定的灵敏度也越大。(三)吸收定律的适用条件:1.必须是使用单色光为入射光;2.溶液为稀溶液;3.吸收定律能够用于彼此不相互作用的多组分溶液。它们的吸光度具有加合性,且对每一组分分别适用,即:A总=A1+A2+A3…+An=ε1bc1+ε2bc2+ε3bc3…+εnbcn4.吸收定律对紫外光、可见光、红外光都适用例题:已知某化合物的相对分子量为251,将此化合物用已醇作溶剂配成浓度为0.150mmol·L-1溶液,在480nm处用2.00cm吸收池测得透光率为39.8%,求该化合物在上述条件下的摩尔吸光系数和吸光系数。解:已知溶剂浓度c=0.150mmol.L-1,b=2.00cm,T=0.398,由Lambert-Beer定律得:ε(480nm)=A/cb=-lg0.398/0.150×10-3×2.00=1.33×103(L·mol-1·cm-1)由ε=aM,得:a=ε/M=ε/251=5.30(L·g-1·cm-1)三.实际溶液对吸收定律的偏离及原因:(一)偏离:被测物质浓度与吸光度不成线性关系的现象,如下图。AC(二)偏离吸收定律的原因:1.入射光为非单色光:严格地说吸收定律只适用于入射光为单色光的情况。但在紫外可见光分光光度法中,入射光是由连续光源经分光器分光后得到的,这样得到的入射光并不是真正的单色光,而是一个有限波长宽度的复合光,这就可能造成对吸收定律的偏离。证明如下:(设混合光是双波长)。设由强度为I0、1和I0、2的1和2两种波长组成的入射光,通过溶液后的强度分别为I1和I2。将Beer定律应用于该两个波长:在1处:10,11110,11lgbcIAbcIIeI或同理,在2处:20,22220,22lgbcIAbcIIeI或综合前两式,得120,10,2120,10,20,10,2lglg1010bcbcIIAIIIIII当1=2时,或者说当1=2时,有A=1bc,符合L-B定律;当12时,或者说当12时,则吸光度与浓度是非线性的。二者差别越大,则偏离L-B越大;对非单色光引起的偏离,其原因是由于同一物质对不同波长的光的摩尔吸光系数不同造成的。所以只要在入射光的波长范围内,摩尔吸光系数差别不是太大,由此引起的偏离是较小的。2.非平行光和光的散射:当入射光是非平行光时,所有光通过介质的光的光程不同,引起小的偏离。另外,当溶液中含有悬浮物或胶粒等散射质点时,入射光通过溶液时就会有一部分光因散射而损失掉,使透过光强度减小,测得的吸光度增大,从而引起偏离吸收定律。3.化学因素引起的偏离:1)离解作用:2)酸效应:3)溶剂作用:1)离解作用:在可见光区域的分析中常常是将待测组分同某种试剂反应生成有色配合物来进行测定的。有色配合物在水中不可避免的要发生离解,从而使得有色配合物的浓度要小于待测组分的浓度(一般有稳定时间限制),导致对吸收定律的偏离。特别是在稀溶液中时,更是如此。2)酸效应:如果待测组分包括在一种酸碱平衡体系中,溶液的酸度将会使得待测组分的存在形式发生变化,而导致对吸收定律的偏离。3)溶剂作用*(前面已经讲过)

1 / 174
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功