(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号(43)申请公布日(21)申请号201710061967.4(22)申请日2015.07.26(62)分案原申请数据201510441587.42015.07.26(71)申请人李娜地址100193北京市海淀区圆明园西路2号中国农业大学(72)发明人李娜 (51)Int.Cl.C02F9/14(2006.01)C02F3/34(2006.01)(54)发明名称一种去除含镉污水污染物的方法(57)摘要本发明涉及一种去除含镉污水污染物的方法,包括如下步骤:首先将污水经过固液分离器,进行固液分离,去除大块固体颗粒物质,随后液体进入沉淀池,沉淀12小时,再将液体通过圆孔过滤网去除固体絮凝物,经圆孔过滤网过滤的液体进入生物反应池,调节PH为7,按每立方米液体每次投加复合菌剂10克,每天投加1次,连续投加一周,最后静置3天,将液体排出。本发明的方法能够有效地去除含有氨氮硫磷以及镉的污染物,并且投入成本低,具备较好的应用前景。权利要求书1页说明书4页CN106630493A2017.05.10CN106630493A1.一种去除含镉污水污染物的方法,其包括如下步骤:首先将污水经过固液分离器,进行固液分离,去除大块固体颗粒物质,随后液体进入沉淀池,沉淀12小时,再将液体通过圆孔过滤网去除固体絮凝物,经圆孔过滤网过滤的液体进入生物反应池,调节PH为7,按每立方米液体每次投加复合菌剂10克,每天投加1次,连续投加一周,最后静置3天,将液体排出。2.如权利要求1所述的方法,其特征在于:所述复合菌剂由如下重量份的原料菌混合而成:红球菌10份,脱氮硫杆菌9份,施氏假单胞菌7份,鞘氨醇单胞菌6份,短小芽孢杆菌5份,黄孢原毛平革菌2份;上述各原料菌的浓度均控制在(1-2) ×108个/ ml。3. 如权利要求2所述的方法,其特征在于:所述的黄孢原毛平革菌为转入了编码如下蛋白变体的编码基因的黄孢原毛平革菌(Phanerochaete chrysosporium)ATCC 24725菌株,所述蛋白变体为相对于蛋白原始氨基酸序列进行如下突变: 304P/S,蛋白原始氨基酸序列参见GenBank:NP_744955.1。4. 一种蛋白变体,其特征在于:所述蛋白变体为相对于蛋白原始氨基酸序列进行如下突变: 304P/S,蛋白原始氨基酸序列参见GenBank:NP_744955.1。权 利 要 求 书1/1页2CN106630493A2一种去除含镉污水污染物的方法技术领域[0001]本发明属于环保技术领域,具体涉及一种去除污水中污染物的方法。背景技术[0002]伴随着工业生产的发展以及人们生活水平的提高,工业污水量以及城市生活污水量正以惊人的速度猛增,这些污水或已经或正在污染着人类赖以生存的江、河及湖泊,已构成威协人类生存环境的原因之一。[0003]为了满足公众对环境质量要求的不断提高,国家对氮制订了越来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、电化学处理、催化裂解;生物方法有硝化及藻类养殖,然而物理方法处理效果不佳,较之化学法,生物方法处理废水有如下优点:1)每种化学用品都是针对性很强的产品,当遇到其他化学物质时就有可能失效,而生物制剂对污染物的去除具有光谱性;2)化学产品可以暂时消除某些有害物质以及掩盖臭味,缺不能阻止有害物质的生成;3)使用化学产品后,水体中会有残留,可能导致二次污染。生物制剂所含天然微生物,不含致病菌和病原体,这些微生物在酶的催化作用下,以污水中的有机营养物质为食物,当污水得到净化后,这些微生物会随污染物的降低而逐渐减少,直至消亡;4)无毒,无腐蚀性,使用方便,基本不需要添加设备或是工程,节省资金投入。[0004]污水主要有生活污水和工业废水。工业污水成分比较复杂,特别是大量的人工合成化合物进入环境,这类物质主要是氨氮类、硫化物以及含磷化合物,由于这些物质本身结构的复杂性,在短时间内不能被微生物分解利用,传统的废水处理方法用活性污泥培养驯化的微生物已不能有效地对这些污染物加以去除,这些物质长期在环境中积累,给我们赖以生存的生态环境造成很大污染,给人类的身心健康带来很大危害。我国相当一部分工业污染企业宁可受罚也不愿意投资治理废水,即使有污水处理装置运行也极不正常。因此,开发一种建设投资少、运行成本低、处理效率好的污水处理技术迫在眉睫。发明内容[0005]为了克服现有技术的不足,有效简单地去除污水中的氨氮硫磷以及重金属等污染物,本发明提供了一种去除污水中污染物的方法,其技术方案是通过如下方法实现的:[0006]一种去除含镉污水污染物的方法,其包括如下步骤:[0007]复合菌剂的制备:将混合菌液和载体按照1:1的重量比混合,搅拌均匀,然后静置6小时,最后置4℃下低温干燥,干燥后含水量控制在6%,即得;所述载体由竹炭、壳聚糖以及硅藻土按照2:2:1的质量比例混合得到,竹炭的粒径优选10目;[0008]污水处理步骤:首先将污水经过固液分离器,进行固液分离,去除大块固体颗粒物质,随后液体进入沉淀池,沉淀12小时,再将液体通过圆孔过滤网去除固体絮凝物,圆孔过滤网的圆孔直径为0.1mm,生物氧化:经圆孔过滤网的液体进入生物反应池,调节pH为7,按说 明 书1/4页3CN106630493A3每立方米液体每次投加复合菌剂10克,每天投加1次,连续投加一周,最后静置3天,将液体排出。[0009]优选的,所述复合菌剂由如下重量份的原料菌混合而成:[0010]红球菌10份,脱氮硫杆菌9份,施氏假单胞菌7份,鞘氨醇单胞菌6份,短小芽孢杆菌5份,黄孢原毛平革菌2份;上述各原料菌的浓度均控制在(1-2)×108个/ml。上述菌种可以是现有技术的常规菌株;[0011]优选地,[0012]所述红球菌为红球菌(Rhodococcusrhodochrous)ATCC15906;[0013]所述脱氮硫杆菌为脱氮硫杆菌(Thiobacillus denitrificans)ATCC25259;[0014]所述施氏假单胞菌为施氏假单胞菌(Pseudomonas stutzeri)CCTCC NO:M209107;[0015]所述鞘氨醇单胞菌为鞘氨醇单胞菌(Sphingomonas sp.)CGMCC N0.4589;[0016]所述短小芽孢杆菌为短小芽孢杆菌(Bacillus pumilus)ATCC27142;[0017]所述黄孢原毛平革菌为黄孢原毛平革菌(Phanerochaete chrysosporium)ATCC24725。[0018]本发明所述的菌均可以从CGMCC、CCTCC以及美国模式培养物集存库(ATCC)等商业途径购买得到。[0019]优选的,所述的黄孢原毛平革菌为转入了编码如下任一个蛋白变体的编码基因的黄孢原毛平革菌(Phanerochaete chrysosporium)ATCC 24725菌株,所述蛋白变体为相对于蛋白原始氨基酸序列分别进行如下突变71S/T、89T/Y、121T/A、143D/S、184S/Q、239W/G、246V/P、269K/N、304P/S、353K/E、369G/D、372C/S、422D/R、448G/I,蛋白原始氨基酸序列参见GenBank:NP_744955.1。[0020]本发明同时提供一种能够高效吸收镉的转基因菌株,该菌株通过将氨基酸序列如Genbank:NP_744955.1所示的序列导入到黄孢原毛平革菌中实现其目的。[0021]并且所述的氨基酸序列可以具有如下不同的位点的突变,71S/T、89T/Y、121T/A、143D/S、184S/Q、239W/G、246V/P、269K/N、304P/S、353K/E、369G/D、372C/S、422D/R、448G/I。(71S/T表示在原始序列第71位的S氨基酸替换为T氨基酸)。这些突变后的氨基酸序列舍得导入了该突变后的氨基酸序列的菌株同样具有相似的效果。而申请人通过大量的实验证实,并不是所有的取代都具有相似的效果,有大量的取代之后的黄孢原毛平革菌与其它菌株一起并不具有较好的污水处理的效果。[0022]利用DNAMAN软件设计引物,分别加入了BamHI和SalI酶切位点,根据氨基酸序列NP_744955.1全基因合成所述的核苷酸序列HP基因,通过进行扩增获得目的片段,PCR扩增获得目的基因HP(同时通过多重PCR将相应的突变位点引入到基因序列中,从而获得了不同突变体基因),用BamHI和SalI进行双酶切PCR产物,与同样经过BamHI和SalI双酶切的表达载体PWB980相连,将验证成功的重组质粒转化进入到所述黄孢原毛平革菌中,获得降解镉的基因工程菌。[0023]本发明的各菌种的扩大培养均为本领域的常规培养方式,也可以参照文献中记载的培养方式获得。[0024]本发明取得的主要有益效果如下:本发明采用纯菌剂处理污水,有效地净化了污水,并且除磷、脱氮同时去除,在此基础上同时能够去除污水华中的重金属镉解决了传统工说 明 书2/4页4CN106630493A4艺中除磷与脱氮效果难以同时兼顾重金属去除的矛盾,具有较好的应用前景。具体实施方式[0025]实施例1[0026]一种去除污水中污染物的方法,其包括如下步骤:[0027]复合菌剂的制备:将混合菌液和载体按照1:1的重量比混合,搅拌均匀,然后静置6小时,最后置4℃下低温干燥,干燥后含水量控制在6%,即得;载体由竹炭、壳聚糖以及硅藻土按照2:2:1的质量比例混合得到;上述混合菌液由如下重量份的原料菌混合而成:红球菌10份,脱氮硫杆菌9份,施氏假单胞菌7份,鞘氨醇单胞菌6份,短小芽孢杆菌5份,黄孢原毛平革菌2份;上述各原料菌的浓度均控制在1×108个/ml。[0028]污水预处理:首先将污水(NH3-N为300mg/L,硫化物80mg/L,含磷污染物为70mg/L,镉含量为40mg/ml,经过固液分离器,进行固液分离,去除大块固体颗粒物质,随后液体进入沉淀池,沉淀12小时,再将液体通过圆孔过滤网去除固体絮凝物,圆孔过滤网的圆孔直径为0.1mm;[0029]生物氧化:经圆孔过滤网的液体进入生物反应池,调节pH为7.0,按每立方米液体每次投加复合菌剂10克,每天投加I次,连续投加一周,最后静置3天,将液体排出。经检测,污水中氨氮的含量分别为12.5mg/L,硫化物4.5mg/L,含磷污染物为2.5mg/L,去除率均达到95%以上;而镉含量为37mg/mL,去除效果不显著。[0030]实施例2[0031]利用DNAMAN软件设计引物,分别加入了BamHI和SalI酶切位点,根据氨基酸序列NP_744955.1全基因合成所述的核苷酸序列HP基因,通过进行扩增获得目的片段,PCR扩增获得目的基因HP(同时通过多重PCR将相应的突变位点71S/T、89T/Y、121T/A、143D/S、184S/Q、239W/G、246V/P、269K/N、304P/S、353K/E、369G/D、372C/S、422D/R、448G/I引入到基因序列中,从而获得了不同突变体基因),用BamHI和SalI进行双酶切PCR产物,与同样经过BamHI和SalI双酶切的克隆表达载体PWB980相连,将验证成功的重组质粒转化进入到所述黄孢原毛平革菌(Phanerochaete chrysosporium)ATCC24725中,获得降解镉的基因工程菌。[0032]实施例3黄孢原毛平革菌基因工程菌与其余几种菌剂的污水处理效果验证[0033]按照实施例1的方法,进行相应的污水处理实验,其污水与实施例1的污水属于同一批次,具有相同浓度的污染物浓度。其中菌剂的各组分组成与实施例1的完全相同。[0034]分别采用实施例2获得的不同的突变位点的基因工程菌进行去除镉的反应,通过实验发现,71S/T、89T/Y、121T/