9《》2014-12-122015-03-052013ZX07201007-003-011990-1990weiwei2008@163.com*zhangliqiu@163.com。EnvironmentalScience&Technology38920159Vol.38No.9Sept.2015高靖伟,程翔,封莉,张立秋*100083EGSB。SLREGSB。35±1℃、COD2200mg/L、HRT15hCOD92%。SLRCODSLR1.3kgSO42-/m3·d。HRT24hCOD、SO42-90%、82%。EGSBCOD、SO42-75%、60%。21.1%、17.5%COD/SO42-3.0。X703.1Adoi10.3969/j.issn.1003-6504.2015.09.0271003-6504(2015)09-0141-06PerformanceoftheCombinedEGSBReactorTreatingFermentationWastewaterGAOJingweiCHENGXiangFENGLiZHANGLiqiu*BeijingKeyLaboratoryofWaterPollutionControlTechnologyCollegeofEnvironmentalScienceandEngineeringBeijingForestryUniversityBeijing100083ChinaAbstractAlab-scaleanaerobicexpandedgranularsludgebedEGSBreactorwasadoptedtotreatthesimulatedfermentationwastewaterandtheactualfermentationwastewater.ThesulfateloadingrateSLRonthetreatmenteffectofEGSBandtheperformanceofactualfermentationwastewatertreatmentwasinvestigated.TheresultsshowedthatEGSBwaseffectiveinremovingorganicpollutantsofthesimulatedfermentationwastewaterundermesophilicconditionof35±1℃hydraulicretentiontimeHRT15hCODremovalreached92%whentheinfluentCODwasaround2200mg/L.WiththeincreaseofSLRCODremovalefficienciesreduced.WhentheSLRwas1.3kgSO42-/m3·dthereactoracidificationoccurred.HRTshouldbeextendedto24hsoastoguaranteethestableofthereactorandCODandSO42-removalefficiencieswere90%and82%underthisconditionwhiletheefficienciesofCODandSO42-fortheactualfermentationwastewaterwere75%and60%respectively.Duringtherunningprocessofthesystemthelargestpercentelectronflowwhichsulfatereducingbacteriawereachievedat21.1%and17.5%forsimulatedfermentationwastewaterandactualfermentationwastewaterwhilethecorrespondinglowestCOD/SO42-valuewasabout3.0.Atthistimethewholereactionsystemisthemostcompetitivebutthemethanogensstillremainhighcompetitive.Keywordsfermentationwastewaterexpandedgranularsludgebedsulfateloadingrateelectronflow、、2012100t。1t60~130m3[1]。、、、[2]。38CODTOCTPTNNH4+-NpHSO42-Cl-BOD52200~2500780~90020~25120~19080~1006.2~7.0550780~8501500~170086~951600。[3]COD2200~2500mg/LSO42-1000mg/LSMP、Cl-、。、、、、。Sanchez[4]COD0.55kgCOD/m3·dCOD94%Janosz[5]36℃COD3.0kgCOD/m3·dHRT2.5dCOD65%Ciner[6]UASBCOD17000~20000mg/LOLR8~13kgCOD/m3·dCOD70%~80%。UASB1m/h[7][8]。EGSBUASBEGSB[9]。EGSBSO42-EGSB。EGSB。11.1实验用水1。1Table1CharacteristicsoffermentationwastewaterpHmg/L。2。。。1L1mL2[10]EGSB。。4℃EGSB35±1℃。1.2接种污泥MLVSS/MLSS0.730.5~1.5mm2/3。2.0m/hSO42-。1.3实验装置EGSB1。4.0L60mm2Table2CompositionoftraceelementFeSO42000mgH3BO450mgZnSO4·7H2O50mgCuSO4·5H2O40mgMnSO4·7H2O500mg(NH4)6Mo7O24·4H2O50mgAl2(SO4)3·16H2O30mgCoSO4·7H2O150mg96%H2SO41mL。912∶1。EGSB520cm。35±1℃2.0m/h1mol/LH2SCO2。1.4分析方法CODMLSSMLVSS[11]pHTOCJenamultiN/C3100IC-3000。22.1EGSB反应器的启动与运行SO42-831~20d~SO42-400mg/L800mg/L102d126~162d163~264d123~125。BOD51850mg/LBOD51600mg/L。HRT/hCOD/mg·L-1SO42-/mg·L-1OLR/kgCOD·m-3·d-1SLR/kgSO42-·m-3·d-1(0~20d)152200~250003.5~4.00(21~40d)152200~2500400~4303.5~4.00.64~0.69(41~60d)152200~2500500~5253.5~4.00.8~0.84(61~80d)152200~2500600~6273.5~4.00.96~1.0(81~100d)152200~2500700~7313.5~4.01.12~1.17(101~122d)152200~2500800~8423.5~4.01.28~1.35(126~162d)242200~2500800~8362.2~2.50.8~0.84(163~264d)242100~2588800~8422.1~2.60.8~0.843EGSBTable3OperatingprocessofEGSBreactor2.1.1SLREGSBCODSO42-SLREGSBCODSO42-23。210dCOD90%COD。21SO42-400~430mg/L20dCODSO42-90%88%SO42-EGSB。[12]SO42-。EGSBSO42-。SO42-400mg/L700mg/LCOD90%SO42-88%78%。SO42-800mg/L101~120COD122CODSO42-77.6%70%SO42-H2S[13]。381232hHRT15h24h3d。23126~162CODOLRSLR2.5kgCOD/m3·d0.8kgSO42-/m3·dCOD90%COD230mg/LSO42-82%。OLRSLRCOD、SO42-CODSO42-75%、60%。MPBSRB。GC-MS4。4、、4--2-、2--3-、。。2.1.2EGSBpHEGSB、pH5。5EGSBIpH6.2~6.8pHVFACH4CO2。SO42-pH。24pH。102SO42-800mg/LpHVFAsCO32-、HCO3-Ac-pH[14]。5164SLR、pHpH、。VFApH[15]。5EGSBSO42-。[16]COD/SO42-4Table4Organismsinthefermentationwastewater/%/%10C6H5F4922.963C8H10O9419.6374--2-C7H7NO49515.9862--3-C8H8O33811.539C12H10N2O2426.7211-2,2`-C14H10O2594.0222-C6H7NO912.84123-C13H12602.311C7H8O961.8184--2,5-C10H12O3581.7213C18H38971.3655--2-C7H10N2O2351.024,2-4-C7H9NO2300.789。[17]1molSO42-2mol。102。2.2电子流量变化SO42-MPB。21SO42-SRB。Isa[18]SRBMPBCOD。1molSO42-1molH2S1molH2S2molO264gCODESRBESRB=ΔSO42-×6411ΔSO42-1LSO42-mol/L。1molCH42molO264gCODEMPBEMPB=ΔCH4×6422ΔCH41LCH4mol/L。SRBMPBηSRB=ESRB/ESRB+EMPB×100%3ηMPB=EMPB/ESRB+EMPB×100%43~4ηSRBSRBSRBCODηMPBMRBMPBCOD。m3/m3·d67SRBMPBCOD。6SLRCH4SRBSRBCOD。7SRBSLR19%EGSBCODMPBMPB。SLRCOD/SO42-6.03.0SRBSO42-SO42-SO42-COD。HRTSLRMPBSRBSO42-COD。HRT24hMPBSRB72%17%2COD。2.3反应器内颗粒污泥的变化0.5~1mm。1802~3mm。8a、c180d8b、dH2、CO2、CH4[19]。31EGSB3835±1℃HRT24hCOD、SO42-90%、82%COD、SO42-75%、60%。2SLR0.6~1.3kgSO42-/m3·dpH、CODSO42-SRB1.9SRB。3COD/SO42-2.6MPB、SRB75.1%、21.1%MPB、SRB71.8%、17.5%。[][1].[J].2007303103-107.ZhouXuanLiuHuiWangYanxinetal.Advanceinthebiologicaltreatmenttechniquesofyeastwastewater[J].Envi-ronmentalScience&Technology2007303103-107.inChinese[2].[M].2005.YuJingzhi.HandbookoftheYeast’sProductionandAppli-cation[M].BeijingChinaLightIndustryPress2005.inChinese[3]KhanalSKJCHuang.ORP-basedoxygenationforsulfidecontrolinanaerobictreatmentofhigh-sulfatewastewater[J].WaterResearch20033792053-2062.[4]SanchezHe