、、CODpH、、、[1]BOD5/COD[2]。、、、、FentonFe/CFe/C-Fenton、、[3]。-COD、BOD5、、Fe/C-Fenton-Fe/C-GB27631-2011。11.1。COD、BOD、、SS、、TN、TP11000、4300、700、720、15.06、38.13、5.26mg/L1024pH4。10min30min24h--121311.2.3.712100Fe/CFenton-、。Fe/C-FentonHRT90min、1.5:1、115.6mg/L、H2O2128.4mL、pH3.79COD78.21%、85.17%BOD5/COD0.390.54COD、、BOD5/COD93.63%、95.42%、0.6COD、BOD、87.5、19.4、4.7mg/L99.2%、90.9%、99.3%SS、、、12.6、3.26、18.13、0.42mg/L16pH7.3GB27631-2011。Fe/CFentonX797A1000-3770(2017)12-0095-0042017-03-072015NY0192017NY1861989-1074743761@qq.com15229266018yangjihong@nwsuaf.edu.cnDOI:10.16796/j.cnki.1000-3770.2017.12.0204312201712Vol.43No.12Dec.,201795[4]。Fe/C10mL。1.22mol/LH2SO4、NaOHpH。1LpH930min8000r10minCOD、。1.3COD-BODpHSSTN。22.1Fenton、Fe/C、Fe/C-FentonHRT160min、30%H2O280mL、300g/L1:1Fe/C-FentonFe/CH2O2Fentonn(H2O2):n(Fe2+)=5:1。pH1。1Fe/C-FentonCOD、70%FentonCOD42%Fe/C39%。pHFe/C-Fenton、Fenton3.8Fe/C。FentonCOD、Fe/C-Fenton。2.2Fe/C-Fenton2.2.1HRTHRTFe/C-Fenton1。H2O2100mL/LpH=3.5300g/L1:1。HRT60minCOD、60minHRT90minHRT90minHRT90min。2.2.22COD、100g/L100g/L。2.2.3100g/L3。COD、1.5:1。1HRTFig.1EffectofHRTonwinerywastewater020406080100120140160180200020406080100%HRTmin 2Fig.2Effectofdosageofiron-carbononwinerywastewater050100150200250300350400405060708090% /(gL ) 3Fig.3Effectofmassratioofirontocarbononwinerywastewater5055606570758085% 2:11.5:11:11:1.51:2FentonFe/CFe/C+Fenton42.5752.1767.18COD/%/%pH48.1838.1970.452.64.83.41Fenton、Fe/C、Fe/C-FentonTab.1EffectofFenton,Fe/Cmicro-electrolysisandFe/C-Fenton431296[5]。2.2.4pH4pH=3.5pH2.5pH4。pH、pH[6]。2.2.5H2O25H2O2120mL。2.3Box-BehnkenBox-Behnken、H2O2、pHCOD、COD、CODY1=7493+3.47X1+2.71X2+3.39X3+1.33X1X2+0.61X1X3+1.34X2X3-2.27X12-3.35X22-4.75X32Y2=84.28+2.40X1+3.56X2+0.88X3+1.80X1X2-0.20X1X3-0.12X2X3-4.36X12-7.99X22-4.78X322H2O2、pHCOD。Y1F=27.88P=0.0001。、H2O2、pHP0.01COD。R2=0.9729R2Adj=0.93893.8%0.580.05。Y2F=119.03P0.0001。、FentonP0.01CODpHP0.05CODX1X2H2O2。R2=0.9935R2Adj=0.985298.52%0.400.05。。85.17%106.6g/LpH3.54H2O2125.2mL/LCOD78.21%1115.6g/LpH3.79H2O2128.4mL/L。CODCODCOD。COD383.36%、83.94%、84.72%85.17%2%COD77.85%、77.11%、77.16%78.21%2%。2.4Fe/C-FentonFe/C-FentonCOD2200~2400mg/L100~110mg/L、2。4pHFig.4EffectofpHonwinerywastewater123456782030405060708090%pH 6080100120140160405060708090%H O /mL 5H2O2Fig.5EffectofdosageofH2O2onwinerywastewaterCOD/(mg·L-1)BOD5/(mg·L-1)ρ()/(mg·L-1)/pHρ(SS)/(mg·L-1)11000430070010243.5720240013001101289160700390323295066037028329432Fe/C-FentonTab.2ResultofwastewaterrepeatedtreatmentbyFe/Cmicro-electrolysis-FentonFe/C-Fenton-972Fe/C-FentonCOD、、BOD590%。Fe/C-FentonCOD700mg/L。。Fe/C-FentonBOD5/COD0.390.54、0.6Fe/C-Fenton。2.5。。2.5L16g/L10g/L30℃pH7~824hCOD1000mg/LCOD[7]。15dCOD100mg/L。Fe/C-Fenton-COD、BOD、、SS、、、87.5、19.4、4.7、12.6、3.26、18.13、0.42mg/L16pH7.4GB27631-2011。2.66。4GB27631-20113。3Fe/CFentonCOD、77%、83%BOD5/COD0.390.6。-Fenton--COD、TNGB27631-2011BOD5、TP、SS、pH、、。。[1]SHERIDANCM,GLASSERD,HILDEBRANDTD,etal.AnannualandseasonalcharacterizationofwineryeffluentinSouthAfrica[J].SouthAfricanJournalforEnologyandViticulture,2011,32(1):1-8.[2].[D].:,2013:3-5[3],,,.[J].,2016,34(3):27-31.[4],,,.+EF-Feox+[J].,2016(3):94-98.[5],,,.-Fenton[J].,2016,47(3):22-27.[6]GOGATEPR,PANDITAB.AReviewofImperativeTechno-logiesforWastewaterTreatment,I.OxidationTechnologiesatAmbientCondition[J].AdvancesinEnvironmentalResearch,2004,8(3-4):501-551.[7],,,.-UASB-SBR[J].,2016(3):116-120.123425000100005000200080003900210070091.688.484.295.018.217.517.919.716161616COD/(mg·L-1)BOD5/(mg·L-1)COD/(mg·L-1)BOD5/(mg·L-1)/10241024512256/3Tab.3Contrastofwastewaterindicatorsbeforeandaftertreatment6Fig.6ProcessrouteofwinerywastewatertreatmentNaOHH SO Fe/C H O NaOHNaOHH2SO4H2O2NaOHFe/C104431298StudyonPhosphateremovalandReutilizationbySuperconductingMagneticSeparationCombinedwithFeOOHZHOUBinbin1,LIYiran1,2,SUNZhanxue1,2,ZHANGWeimin1,2,WANGJun3(1.SchoolofWaterResourcesandEnvironmentalEngineering,EastChinaUniversityofTechnology,Nanchang330013,China;2.StateKeyLaboratoryBreedingBaseofNuclearResourcesandEnvironment,EastChinaInstituteofTechnology,Nanchang330013,China;3.KeyLaboratoryofDrinkingWaterScienceandTechnology,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China)Abstract:T1~T3FeOOHsampleswithmeanparticlesizeof36.47~58.68μmwerepreparedthroughco-precipitation,anditsadsorptioncapacityforphosphoruswastewaterwerestudied.Theresultsshowedthat,theFeOOHwasanamorphousstructure.FeOOHadsorptionbehaviorforphosphoruswasfittedwithLangmuirisotherm,andthesaturatedadsorptioncapacityofsamplesfromlargetosmallestwasT3,T2andT1.ThephosphoruscontentineffluentdecreasedwiththeincreaseofFeOOHdosage,InordertoreachtheGB8978-2015firstAstandard,adosageof2g/Land4g/LFeOOHwasusedwhentheinitialmassconcentrationofphosphoruswas2mg/Land5mg/L,respectively.T1hadbestsuperconductingmagneticseparationeffect,andanumberof1087columnvolumeswerereachedwithT1inthebreakthroughtest.Themassconcentrationofphosphorusineffluentwaslowerthan0.5mg/Linthemagneticseparation,an