··:2005-05-24:863(2004AA649360): (1980-),,,2002,。IABR-IBAF王 新,倪晋仁,翟凤敏(,,100871) :难降解有机物含量高且碳氮比失调是造成养猪场稳定塘废水难于处理的主要原因。本文采用基于固定化微生物技术的厌氧折流板(IABR)与曝气生物滤池(IBAF)组合工艺处理稳定塘废水,对比了IABR-IABF组合工艺与单一IBAF工艺的处理效果,研究了碱度和碳源对硝化反硝化过程的影响。组合工艺平均进水COD1532.6mg/L,平均出水为332.7mg/L,去除率为78%,NH3-N平均进水538.6mg/L,平均出水为12.3mg/L,去除率97.7%。以新鲜废水做反硝化阶段的碳源时TN去除率93%,可有效解决脱氮过程中的碳源成本问题。 :;;;;:X703 :A :1001-3644(2005)04-0001-04ExperimentalStudyonTreatmentofSwineLagoonWastewaterbyIABRandIBAFSystemWANGXin,NIJin-ren,ZHAIFeng-min(TheKeyLaboratoryofWaterandSedimentSciences,MinistryofEducation,DepartmentofEnvironmentalEngineering,PekingUniversity,Beijing100871,China)Abstract:Theswinelagoonwastewaterisdifficulttotreatduetoitshighcontentoforganiccompoundsofdifficult-to-degradationandtheimproperproportionofC/N.IntegratedtreatmentthatbasedonimmobilizedmicroorganismswasadoptedinthisexperimentwhichincludedAnaerobicBaffledReactorandBiologicalAerobicFilterBed.Thetreatmentefficiencybetweensingleaerobictreatmentandcombinedanaerobic-aerobictreatmentwascompared,andtheinfluenceofalkalinityandcarbononthenitrificationanddenitrificationprocesswasstudied.CODvalueisdroppingfromabout1532.6mg/Lto332.7mg/LwiththeCODremovalefficiencyof78.3%afterthecombinedanaerobicandaerobictreatment,whileNH3-Nvalueisdroppingfromabout538.6mg/Lto12.3mg/LwiththeNH3-Nremovalefficiencyof97.7%.TheTNremovalefficiencyis93%whenfreshrinsewastewaterwasusedascarbonresourceindenitrification,whichcouldreducetheoperationcost.Thisexperimentprovidesanewwaytosolvenitrogenremovalproblemoftheswinewastewater.Keywords:Swinewastewater;biologicalaerobicfilterbed;immobilizedmicroorganism;nitrification;denitrification1 前 言、-[1]。,。800[2],20,1,,,,,[3~8]。。,()[9~14],,,,。SBR,[15,16],MAP[17~19],,。(IABR)(IBAF),。—1—2005244DOI:10.14034/j.cnki.schj.2005.04.0012 材料与方法2.1 ,,1,3∶1,,。1 (mg/L) pHCODNH3-NTP17.81706.4589.741.328.11831.6621.150.28.01521.7512.245.8 2 (mg/L,RSD%)CODNH3-NTNTPRSDRSDRSDRSD1562.31.6538.42.3565.33.145.14.2,20~30m3,COD7000~8000mg/L,NH3-N900~1100mg/L,2000m3,,,26116,。2.2 ,1。ABR12L,8L,,(80m2/g),(98%),,1.0g/cm2。B350,、。1. 2. 3. 4.1 2.3 (IABR)(ABR),ABR,,。ABR,。IABRABR。,,IABR;,ABR。35℃,90h。2.3.1 IABR的启动IABR,,,10g,,90h。2.3.2 ABR的启动ABR,,[9]。,1∶1,,,,。2.4 IBAF,2h,5g,5,,200ml/h,8,60h。2.5 ,5%HCl24h,5%NaOH24h。-OH-COOH,。3 结果与讨论3.1 IABRABR2IABRABR160COD,COD1524.8mg/L,1104.2mg/L,27.6%。,IABRABR,IABR60,COD,ABR90COD。,COD,。3、4、5—2—2005244IABRABRCOD,IABRABR,,,,。,B/C,B/C0.19,,ABRB/C0.32,IABRB/C0.41。IABRB/CABR。2 3 30COD4 60COD5 90COD3.2 IBAFIABR-IBAF,。IBAFIABR-IBAF,。IABF,IABRIBAF,6。6 COD,1532.6mg/L,IBAFCOD758.7mg/L,COD773.9mg/L;IABR-IBAFIABRIBAF1121.2mg/L,IBAF332.7mg/L,CODIBAF788.5mg/L。COD,,,50.5%;IBAF70.3%,78.3%。IBAF,IBAF120h,。IBAF,IABR,,—3—2005244,。3.3 IBAF,(NO3-N+NO2-N),,pH。7IBAFNH3-N,,2754.4mg/L,IBAF-1,IBAF-2,IBAF26.9mg/L,IBAF-1pH7.3~7.6,IBAF-2、IBAF-3IBAF-4pH6.1~6.3,pH,NH3-NIBAF-2,172.5mg/L。Na2CO3,NH3-N,Na2CO31.5g/L,538.6mg/L,NH3-N12.3mg/L,97.7%。IBAF,;。7 NH3-N,,。,,,。,,,。IBAF-4NOx-N,IBAF-4(COD8226mg/L,NH3-N867mg/L),(COD/NOx-N)3∶1,TN。3,COD354mg/L,,NOx-N,IBAF,,,[20]。TN,96%。TN93%,TN、NOx-NCOD,,,。3 NOx-NTNTNTNCOD10455413875%354125612196%386215433893%4254 结 论4.1 ,COD1532.6mg/L,NH3-N538.6mg/L,IABR-IBAFCOD332.7mg/L,78.3%,NH3-N12.3mg/L,97.7%。TN93%,。4.2 ,IABRABR,B/CABR,。:[1] , .[J].,2004,(5):29-31.[2] ,,.[J].,2002,18(2):24-28.[3] LiphadziMS,KirkhamMB,MankinKR.Remediationofammoni-um-contaminatedabandonedanimalwastelagoonsoil:Physicalprop-ertiesandgrowthofbarley[J].Soil&SedimentContamination,2002,11(6):789-807.[4] BurkholderJM,MallinMA,GlasgowHB,etal.Impactstoacoastalriverandestuaryfromruptureofalargeswinewasteholdinglagoon[J].JournalofEnvironmentalQuality,1997,26(6):1451-1466.[5] KhanMR,SahaML,HoqueS,etal.Bacteriaandchemicalpollu-tantsofanindustrialwastedisposallagoon[J].BanglandeshJournalofBotany,1999,28(2):97-102.(下转第8页)—4—20052447 Fig.7 Photocatalyticdegradationrouteofphenol4 结 论4.1 10mg/L,HPLC。,、、。4.2 H2O2H2O2,H2O2,,。,H2O2,·OH,。4.3 ,,,,CO2H2O。:[1] CunninghamJ,SrijiaranaiS.Isotopeeffectevidenceforhydroxylradi-calinvolvementinalcoholphoto-oxidationsensitizedbyTiO2inaqueoussuspension[J].JournalofPhotochemistryandPhotobiologyA:Chem-istry,1998,43:329-335.[2] CeresaEM,BurlanacchiL,ViscaM.AnESRstudyonthephoto-re-activityofTiO2pigments[J].JournalofMaterialsScience,1983,18:289-294.[3] NosakaY,YamashitaY,FukuyamaH.Applicationofchemilumines-centprobetomonitoringsuperoxideradicalsandhydrogenperoxideinTiO2potocatalysis[J].JournalofPhysicalChemistryB,1997,101:5822-5827.[4] CarrawayER,HoffmanAJ,HoffmanMR.Photocatalyticoxidationoforganicacidsonquantum-sizedsemiconductorcolloids[J].Environ-mentalScienceTechnology,1994,28:786-793.[5] IshibashiK,FujishimaA,WatanabeT,etal.Quantumyieldsofac-tivespeciesformedonTiO2photocatalyst[J].JournalofPhotochem-istryandPhotobiologyA:Chemistry,2000,134:139-142.[6] PeralJ,DomenechX,OllisDF.Heterogeneousphotocatalysisforpu-rification,decontaminationanddeodorizationofair[J].JournalofChemicalTechnologyandBiotechnology,1997,70:117-140.[7] , ,,.TiO2[J].,1995,15(4):472-478.[8] ,,,.[J].,1996,16(5):373-376.[9] ,.[M].: