:02532468(2004)04057605:X703:ASBR曾薇,彭永臻,王淑莹(,100022):(SBR),.:,;,,,.13,,.13,,,.:;;SBR;ProcessevaluationofalternatingaerobicanoxicprocessappliedinSBRfornitrogenremovalZENGWei,PENGYongzhen,WANGShuying(DepartmentofEnvironmentalEngineering,BeijingUniversityofTechnology,Beijing100022)Abstract:Feasibilityofalternatingaerobicanoxicprocess(AAAprocess)appliedinSBRsystemfornitrogenremovalwasinvestigated.Underthesufficientinfluentalkalinity,AAAprocessdidnothaveanadvantageoveroneaerobicanoxic(OAA)cycleontreatmentefficiencybecausemicroorganismhadanadaptivestageatalternatingaerobicanoxictransition,whichwouldprolongthetotalcyclingtime.Onthecontrary,AAAprocessmadesystemcontrolmorecomplicated.Underthedeficientinfluentalkalinity,whencomparedtoOAA,AAAprocessimprovedtreatmentefficiencyandeffluentquality,andNH+4Nineffluentreachedthedetectionlimitation.Inthenitrification,theaveragestoichiometrybetweenalkalinityconsumptionandammoniaoxidationiscalculatedtobe707mgCaCO3mgNH+4N.Inthedenitrification,theaveragestoichiometrybetweenalkalinityproductionandNO-3Nreductionisabout357mgCaCO3mgNO-3N.Asaresult,halfofthealkalinitypreviouslyconsumedduringtheaerobicnitrificationcanberecoveredduringthesubsequentanoxicdenitrificationperiod.ThatwaswhythehighertreatmentefficiencyinAAAprocesswasobtainedwithoutthesupplementofbicarbonatealkalinity.Ifthelackofalkalinityininfluentwaslessthan13ofthatneeded,thereisnoneedforexternalalkalinityadditionandtreatmentefficiencywassameasthatunderthesufficientinfluentalkalinity.Evenifthelackofalkalinityininfluentwasmorethan13ofthatneeded,AAAprocesswasanoptimalstrategybecauseitreducedtheexternalalkalinityadditionandsavedtheoperationalcost.Keywords:alternatingaerobicanoxicprocess(AAA);oneaerobic-anoxicprocess(OAA);SBR;alkalinity:20030911;:20031218:863(2003AA601010,2003A06);(50138010):(1974!),,(),Zengwei-1@263.net,,,,,[1~3].(SBR),[4,5].SBR,,24420047ACTASCIENTIAECIRCUMSTANTIAEVol.24,No.4July,2004,,,.,,,,.,,.,,,,.,.111,.,NaOHpH.,NH4Cl(50~150mg∀L-1),NaHCO3.CaCO3,200~750mg∀L-1.121;2;3;4;5ORP;6;7;8;9;10;11;12;131SBRFig.1SBRexperimentalsystemSBR1,38L..,DO.,.,N2(3min).,.,N2(3min).DOORPpH.13YSIMODEL52BYSI5739DO,pHS3CE414QORPORP.(CaCO3)CODMLSS.221:2,COD110mg∀L-190mg∀L-1750mg∀L-1;COD110mg∀L-165mg∀L-1550mg∀L-1.HCO-3..MLSS3000~3100mg∀L-1,28~30#.2.2,,.,,5774:SBR2(COD110mg∀L-1)Fig.2Nitrificationdenitrificationresults(influentCDD110mg∀L-1)SBR,,.,,,.,,,.2,(N),(DN)1.1Table1ComparisonofreactionratesNH+4NNd-1DNd-1N1d-1DN1d-1N2d-1DN2d-190mg∀L-10310502710803209465mg∀L-102610027096025098:N1,DN1:,;N2,DN2:,1,,,,.22:COD110mg∀L-193mg∀L-1525mg∀L-1.3:(3a),,(1),NH+4+186O2+198HCO-3(00181+00025)C5H7O2N+104H2O+098NO-3+188H2CO3(1)578241mg∀L-1,707mg∀L-1.,658mg∀L-1,525mg∀L-1,;(3b),NaHCO3,750mg∀L-1,HCO-3;(3c),NaHCO3,525mg∀L-1.,MLSS3000~3100mg∀L-1,28~30#.3.3Fig.3Comparisonsamongexperimentsatdifferentsituations3a:3b3c,,120min,26mg∀L-1.3bNaHCO3,,.3c,,,3b.3c3a,,3c3a.3c3b,,3bNaHCO3,3cNaHCO3,3c3b.3cHCO-34,,.(2):NO-3+5H(!!!)∃12N2+H2O+OH-(2)4HCO-3Fig.4HCO-3variationatalternatingaerobicanoxic,1mg∀L-1357mg∀L-1,(1),1mg∀L-1,707mg∀L-1.(1)(2)(4).,.3cNaHCO3,.,.,(1),1mg∀L-1707mg∀L-1,.,.(5794:SBR%707)13,,HCO-3,.13,.AO,AO.SBR,AO.,,SBR,,HCO-3,.3,1mg∀L-1707mg∀L-1.,,,,.,,,.,,,.1/3,,HCO-3.1/3,HCO-3,,.:[1]HaoOliverJ,HuangJason.Alternatingaerobicanoxicprocessfornitrogenremoval:processEvaluation[J].WaterEnvironmentResearch,1996,38(1):83!93[2]KimHyunook,HaoOliverJ.pHandOxidationreductionpotentialcontrolstrategyforoptimizationofnitrogenremovalinanalternatingaerobicanoxicsystem[J].WaterEnvironmentResearch,2001,73(1):95!102[3]LefevreF,AudicJM,BujonB.Automaticregulationofactivatedsludgeaerationsingletanknitrificationdenitrification[J].WaterScience&Technology,1993,28(10):289!298[4]RordriguesAnaC,BritoAntonioG,MeloLuisF.Posttreatmentofabrewerywastewaterusingasequencingbatchreactor[J].WaterEnvironmentResearch,2001,73(1):45!51[5]PiersonJohnA,PavlostathisSpyrosG.Realtimemonitoringandcontrolofsequencingbatchreactorsforsecondarytreatmentofapoultryprocessingwastewater[J].WaterEnvironmentResearch,2000,72(5):585!59258024