SMBR魏春海1, 黄 霞1, 赵曙光2, 文湘华1(1.清华大学环境科学与工程系,北京100084;2.中国矿业大学化学与环境工程学院,北京100083) : 利用“通量阶式递增法”测定了两种膜组件的临界通量,在此基础上考察了次临界通量下的运行特性。试验发现,次临界通量操作下的膜污染过程具有明显的两阶段特征,与第一阶段跨膜压差(TMP)平缓直线上升相对应的膜污染机制主要是膜孔堵塞和凝胶层污染,与第二阶段TMP剧烈直线上升相对应的膜污染机制则是颗粒沉积层污染;先清水冲洗再化学清洗的方式能有效恢复膜的过滤能力,其中清水冲洗能有效去除颗粒沉积层污染,而化学清洗则能有效去除膜孔堵塞和凝胶层污染。 : 一体式膜生物反应器; 次临界通量; 膜污染; 扫描电镜:X703.1 :A :1000-4602(2004)11-0010-04OperatingCharacteristicsofSubmergedMembraneBioreactoratSub-criticalFluxWEIChun-hai1, HUANGXia1, ZHAOShu-guang2, WENXiang-hua1(1.Dept.ofEnvironmentalScienceandEngineering,TsinghuaUniversity,Beijing100084,China;2.SchoolofChemicalandEnvironmentalEngineering,ChinaUniversityofMiningandTechnology,Beijing100083,China) Abstract: Criticalfluxregionfortwomembranemoduleswasmeasuredbyusing“fluxstep-wise”method,andthentheoperatingcharacteristicsatsub-criticalfluxwereinvestigated.Itisfoundinexperimentthatthemembranefoulingatsub-criticalfluxischaracterizedbytwostageswithtwostagestrans-membranepressure(TMP)profilebeingobserved.ThegradualriseofTMPforthefirststageisduetothefoulingcausedbymembraneporeblockingandgellayer.TherapidriseofTMPforthesecondstageisduetothefoulingbycakelayer.Flushingwithtapwaterfollowedbychemicalcleaningisabletorestorethemembranefiltrationcapacity,withtapwaterflushingforremovingeffec-tivelythefoulingbycakelayerandchemicalcleaningforefficientremovaloffoulingbymembraneporeblockingandgellayer. Keywords: integrativemembranebioreactor; sub-criticalflux; membranefouling; scan-ningelectronmicroscope :(863)(2002AA601220) (Criticalflux)(),。(SMBR),。、·10· 2004Vol.20 CHINAWATER&WASTEWATER No.11,。,“”,。1 材料与方法,(1)。()(),。,××=300mm×120mm×700mm,19L,、,,、。()。(),,(TMP)。,。1 Fig.1 Schematicdiagramofexperimentalsetup,1。1 Tab.1 Characteristicsofmembranemodules(μm)(m2)、(mm)(cm)A10.10.20.27/0.5420A20.220.1460.65/1.020 ()。,5g/L,;,,。2 结果与讨论2.1 :MLSS=5g/L,=0.55m3/h,2、3。2 A1Fig.2 CriticalfluxofmembranemoduleA13 A2Fig.3 CriticalfluxofmembranemoduleA2,,,()。UTMP,(2h)TMP。2mm,TMPΔP=266Pa,:2hTMP266Pa。,A1、A2(12.5,15.9)、(8.22,14.38)L/(m2·h)。A1A2,,。,A1、A2·11·2004Vol.20 No.1112、8.22L/(m2·h)。2.2 A1、A2TMP4。4 Fig.4 VariationofTMPwithtime4,TMP,k(TMP)10。:,,,,TMP。,,,,。,,TMP。A.G.Fane、、S.Ognier。2.3 ,(24h),A1、A25、6。,A1、A280%75%,;1.55、1.13,(0.25%,pH=12.8),,。5 A1Fig.5 VariationofspecificfluxofmoduleA1duringcleaning6 A2Fig.6 VariationofspecificfluxofmoduleA2duringcleaning2.4 A1、A22。2 Tab.2 CompositionofmembraneresistanceformoduleA1andA21012m-1A1A210.0723.369.2822.930.680.34 : ,,。 2,90%,,。2.5 A1、A27。·12·2004Vol.20 No.117 Fig.7 Variationoffluxwithtime 7,A1、A2。4,,TMP,,,。,。2.6 、,,,(),,,,。,,;。,。,,。,,,,。,,,()。。3 结论① MLSS=5g/L、=0.55m3/h,A1、A2(12.5,15.9)、(8.22,14.38)L/(m2·h),12、8.22L/(m2·h)。② :TMP,;TMP,。③ ,,,。:[1] BacchinP.Apossiblelinkbetweencriticalandlimitingfluxforcolloidalsystems:considerationofcriticaldepositformationalongamembrane[J].MembraneScience,2004,228:237-241.[2] ChoBD,FaneAG.Foulingtransientsinnominallysub-criticalfluxoperationofamembranebioreactor[J].Mem-braneScience,2002,209:391-403.[3] YuKaiChang,WenXiangHua,BuQingJie,etal.Criticalfluxenhancementswithairsparginginaxialhollowfiberscross-flowmicrofiltrationofbiologicallytreatedwastewa-ter[J].MembraneScience,2003,224:69-79.[4] OgnierS,WisniewskiC,GrasmickA.Membranebioreac-torfoulinginsub-criticalfiltrationconditions:alocalcriti-calfluxconcept[J].MembraneScience,2004,229:171-177.:(1979- ), , , , 。:(010)62778955E-mail:wch01@mails.tsinghua.edu.cn:2004-06-15·13·2004Vol.20 No.11