高一数学集合教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学习必备欢迎下载1.1.1集合的概念【教学目标】1.初步理解集合的概念;理解集合中元素的性质.2.初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节教学内容师生互动设计意图导入师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象..新课引例:(1)某学校数控班学生的全体;(2)正数的全体;(3)平行四边形的全体;(4)数轴上所有点的坐标的全体.1.集合的概念.(1)一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2)构成集合的每个对象都叫做集合的元素.(3)集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2.元素与集合的关系.(1)如果a是集合A的元素,就说a属于A,记作aA,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作aA.读作“a不属于A”.3.集合中元素的特性.(1)确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2)互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个学习必备欢迎下载新课元素都是不同的对象.4.集合的分类.(1)有限集:含有有限个元素的集合叫做有限集.(2)无限集:含有无限个元素的集合叫做无限集.5.常用数集及其记法.(1)自然数集:非负整数全体构成的集合,记作N;(2)正整数集:非负整数集内排除0的集合,记作N+或N*;(3)整数集:整数全体构成的集合,记作Z;(4)有理数集:有理数全体构成的集合,记作Q;(5)实数集:实数全体构成的集合,记作R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成或,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示,,;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用.例1判断下列语句能否构成一个集合,并说明理由.(1)小于10的自然数的全体;(2)某校高一(2)班所有性格开朗的男生;(3)英文的26个大写字母;(4)非常接近1的实数.练习1判断下列语句是否正确:(1)由2,2,3,3构成一个集合,此集合共有4个元素;(2)所有三角形构成的集合是无限集;(3)周长为20cm的三角形构成的集合是有限集;(4)如果aQ,bQ,则a+bQ.2.选择题⑴以下四种说法正确的()(A)“实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合学习必备欢迎下载(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={}中的元素,则实数为()(A)2(B)0或3(C)3(D)0,2,3均可例2用符号“”或“”填空:(1)1N,0N,-4N,0.3N;(2)1Z,0Z,-4Z,0.3Z;(3)1Q,0Q,-4Q,0.3Q;(4)1R,0R,-4R,0.3R.练习2用符号“”或“”填空:(1)-3N;(2)3.14Q;(3)13Z;(4)-12R;(5)2R;(6)0Z.学习必备欢迎下载1.1.2集合的表示方法【教学目标】1.掌握集合的表示方法;能够按照指定的方法表示一些集合..【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学过程】环节教学内容师生互动设计意图导入1.集合、元素、有限集和无限集的概念是什么?2.用符号“”与“”填空白:(1)0N;(2)-2Q;(3)-2R.这节课我们一起研究如何将集合表示出来.新课1.列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为:{指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,99}.例1用列举法表示下列集合:(1)所有大于3且小于10的奇数构成的集合;(2)方程x2-5x+6=0的解集.解(1){5,7,9};(2){2,3}.练习1用列举法表示下列集合:(1)大于3小于9的自然数全体;学习必备欢迎下载新课(2)绝对值等于1的实数全体;(3)一年中不满31天的月份全体;(4)大于3.5且小于12.8的整数的全体.2.性质描述法.给定x的取值集合I,如果属于集合A的任意元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以用它的特征性质描述为{xI|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1)特征性质明确;(2)若元素范围为R,“xR”可以省略不写.例2用性质描述法表示下列集合:(1)大于3的实数的全体构成的集合;(2)平行四边形的全体构成的集合;(3)平面内到两定点A,B距离相等的点的全体构成的集合.解(1){x|x3};(2){x|x是两组对边分别平行的四边形};(3)l={P,|PA|=|PB|,A,B为内两定点}.练习2用性质描述法表示下列集合:(1)目前你所在班级所有同学构成的集合;(2)正奇数的全体构成的集合;(3)绝对值等于3的实数的全体构成的集合;(4)不等式4x-53的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}③④⑤学习必备欢迎下载新课⑥①注意区别a与{a}.a是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}正偶数构成的集合.它的每一个元素都具有性质“能被2整除且大于0”,而这个集合外的其他元素都不具有这种性质,性质“能被2整除,且大于0”就是此集合的一个特征性质.师:(1)一个集合的特征性质不是唯一的.如平行四边形全体也可表示为{x|x是有一组对边平行且相等的四边形}.(2)在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合.通过练习,进一步突出重点,深化两种表示方法的灵活运用.小结本节课学习了以下内容:1.列举法.2.性质描述法.3.比较两种表示集合的方法,分析它们所适用的不同情况.分析总结:1.有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法.如:集合{2}.2.有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法.如:集合{xQ|1≤x≤4}.学习必备欢迎下载1.1.3集合之间的关系(一)【教学目标】1.理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2.了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学过程】导入已知:M={-1,1},N={-1,1,3},P={x|x2-1=0}.问1.哪些集合表示方法是列举法?2.哪些集合表示方法是描述法?3.集合M中元素与集合N有何关系?集合M中元素与集合P有何关系?集合M与集合N;集合M与集合P通过元素建立了某种关系,本节课,我们就来研究有关两个集合之间关系的问题.新课1.子集定义.如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作AB或BA;读作“A包含于B”,或“B包含A”.2.真子集定义.如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,那么集合A是集合B的真子集.记作AB(或BA);读作“A真包含于B”,或“B真包含A”.3.Venn图表示.集合B同它的真子集A之间的关系,可用Venn图表示如下.AB学习必备欢迎下载新课4.空集定义.不含任何元素的集合叫空集.记作.如,{x|x2<0};{x|x+1=x+2},这两个集合都为空集.5.性质.(1)AA任何一个集合是它本身的子集.(2)A空集是任何集合的子集.(3)对于集合A,B,C,如果AB,BC,则AC.(4)对于集合A,B,C,如果AB,BC,则AC.例1判断:集合A是否为集合B的子集,若是则在()打“√”,若不是则在()打“×”.(1)A={1,3,5},B={1,2,3,4,5,6}()(2)A={1,3,5},B={1,3,6,9}()(3)A={0},B={x|x2+2=0}()(4)A={a,b,c,d},B={d,b,c,a}()例2(1)写出集合A={1,2}的所有子集及真子集.(2)写出集合B={1,2,3}的所有子集及真子集.解(1)集合A的所有子集是,{1},{2},{1,2}.在上述子集中,除去集合A本身,即{1,2},剩下的都是A的真子集.(2)集合B的所有子集是,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合B本身,即{1,2,3},剩下的都是B的真子集.练习写出集合A={a,b,c}的所有子集及真子集.解疑:不能.因为集合的子集也包括它本身,而这个子集是由它的全体元素组成的.空集是任一个集合的子集,而这个集合中并不含有B中的元素.理解子集及真子集的概念.遵循从特殊到一般的认知规律,归纳出定义.学习必备欢迎下载渗透数形结合的数学思想,提高学生的数学能力.1.1.4集合之间的关系(二)【教学目标】1.理解两个集合相等概念.能判断两集合间的包含、相等关系.2.理解掌握元素与集合、集合与集合之间关系的区别.【教学重点】1.理解集合间的包含、真包含、相等关系及传递关系.2.元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学过程】环节教学内容下列集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形};(4)S={x|x>3},T={x|3x-6>3};(5)E={x|(x+1)(x+2)=0},F={-1,-2}.如果两个集合的元素完全相同,那么我们就说这两个集合相等.记作A=B.读作集合A等于集合B.如果AB,且BA,那么A=B;反之,如果A=B,那么AB,且BA.例1指出下面各组中集合之间的关系:(1)A={x|x2-9=0},B={-3,3};(2)M={x||x|=1},N={-1,1}.导入新课学习必备欢迎下载USTF新课新课解(1)A=B;(2)M=N.例2判断以下各组集合之间的关系:(1)A={2,4,5,7},B={2,5};(2)P={x|x2=1},Q={-1,1};(3)C={x|x是正奇数},D={x|x是正整数};(4)M={x|x是等腰直角三角形},N={x|x是有一个角是45的直角三角形}.解(1)BA;(2)P=Q;(3)CD;(4)M=N.练习1用适当的符号(,,=,,)填空:(1)a{a,b,c};(2){4,5

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功