119Vol.11No.920179ChineseJournalofEnvironmentalEngineeringSep.20172016-10-092016-12-221990—。E-mailseudzz@126.com*12*1111.3100302.310030660MWSCR。SCR。65°30°38.6%48.4%192Pa。SCRX511A1673-9108201709-5104-06DOI10.12030/j.cjee.201610024NumericalsimulationoneffectofashremovalbyaddingbaffleatoutletofeconomizerZHAODazhou12*LIYunchao1ZHENGWenguang1HESheng11.HuadianElectricPowerResearchInstituteHangzhou310030China2.ZhejiangProvincialKeyLaboratoryofEnergyStorageandBuildingEnergy-SavingTechnologyHangzhou310030ChinaAbstractAthreedimensionalnumericalmodeloffluebetweentheoutletofeconomizerandtheinletofSCRof660MWpowerunitwasestablishedthemotionlawofflyashparticleswasstudiedbythemodel.Theresultsshowthattheincidentpositionofflyashparticleswhichbiasedtowardstherearoftheoutletofeconomizerandwithlargediameterswereeasilytrappedbythehopper.Theincidentpositionofflyashparticleswhichbiasedto-wardsthefrontoftheoutletofeconomizerandwithlargediameterscanbetrappedbyaddingabattleattheoutletofeconomizermeanwhiletheflyashcapturerateofthesystemwasalsoincreasedatthispointtheSCRinletductisdesignedtoupwardcanreducethepressuredropofthesystem.Whenthebaffleangleis65°horizontalflueinclinationangleis30°theflyashcapturerateofthesystemincreasedfrom38.6%to48.4%thepressuredropofthesystemincreasedby192Pa.KeywordsSCRbafflecaptureofflyashnumericalmodelNOx。selectivecatalyticreductionSCR、1-2。SCRSCR、3-5。6-7。、SCR。8600MW9SCR9660MWSCRSCR10SCR11670MW12、、。。SCR。11.11Fig.1Schematicdiagramofflue660MWSCR。14000mm×9262mm3800mm×9262mm。1GAMBIT302。1.21.2.1、、、k-εdivρuφ=divΓgradφ+S12Fig.2Griddivisionρkg·m-3um·s-1φΓS。1.2.2、Basset、Saffman132dupdt=FDu-up+gρp-ρρp2FD=18μρpd2pCDRe243um·s-1upm·s-1FDu-upρpkg·m-3ρkg·m-3gm·s-2μPa·sReCD1410ReCD1。FLUENTUDFDEFINE_DPM_DRAG。1.2.3-FLUENT。155015111Table1CDoffullrangeReonsphericalparticleReCD=3/16+24/ReRe<0.01CD=24/Re1+0.1315Re0.82-0.05B0.01≤Re<20CD=24/Re1+0.1935Re0.630520≤Re≤260lgCD=1.6435-1.1242B+0.1558B2260<Re≤1500lgCD=-2.4571+2.5558B-0.9295B2+0.1049B31500<Re≤1.2×104lgCD=-1.9181+0.637B-0.0636B21.2×104<Re≤4.4×104lgCD=-4.339+1.5809B-0.1546B24.4×104<Re≤3.38×105CD=29.78-5.3B3.38×105<Re≤4×105CD=0.1B-0.494×105<Re≤1×106CD=0.19-8/Re×104Re>1×106B=lgRe。3Fig.3Schematicdiagramofparticlecollision3。Vt2=EtVt14Vn2=-EnVn15Et=5/7α'>35°1.0-μd1+En|Vt1/Vn1|α'<35{°6En=0.367μd=0.38α'=max1.0β·α9β=-2.202×10-5α3+1.837×10-3α2-6.519×10-2α+1.816+9.522×10-8α-110αradα'radEnEtVt1m·s-1Vn1m·s-1DEFINE_DPM_BC。Define-UserDefined-Functions-CompiledFluent。22.1BMCR23dis-creterandomwalkDRW。2Table2Entranceconditions/m·s-15/m11.15/%2.83/K6503Table3Outletconditions/Pa0/K650/%2.45/m5.39601594Fig.4Distributionofflyashparticleswithdifferentparticlesizesinmodel10~200μm16。Rosin-Rammler2μm500μm70μm200μm。2.2η=Cin-Cout/Cin11η%Cinkg·s-1Coutkg·s-1。4。4。38.6%157Pa。SCR。3000mmα。600mm5。α80°、65°、50°34。5Fig.5Diagramoftransformation4Table4Calculationresultsα/°/Pa/%5060652.36544147.78035839.46Fig.6Distributionofflyashparticleswithdifferentparticlesizesinmodelα。SCR。α65°。α65°6。6。7015117Fig.7Diagramoftransformationβ7。α65°β15°、20°、25°、30°5。β。β。β25°8。5Table5Calculationresultsβ/°/Pa/%1540647.72039547.92537748.13034948.48Fig.8Distributionofflyashparticleswithdifferentparticlesizesinmodel3660MWSCR。SCR。。1.M.20062.SCRM.20073.SCRJ.2015446986-9904.SCRJ.2014295580-5855.SCRJ.201127510-126.SCRJ.2011321264-687.SCRJ.2014439-408.J.2015356489-4959.SCRJ.20154412119-12510XUYYZHANGYLIUFNetal.CFDanalysisonthecatalystbreakagefailureofanSCR-DeNOxsystemfora350MWcoal-firedpowerplantJ.Computers&ChemicalEngineering2014693119-12711.670MWSCRJ.201531458-6112.J.2010391273-7513.J.201647232-3814.DPMJ.201548139-4815KUANBREANSCHWARZMP.ApplicationofCFDinthedesignofagritcollectionsystemforthecoal-firedpowergener-ationindustryJ.PowderTechnology20071791/265-7216.660MWJ.2014423323-3288015