39720187ENVIRONMENTALSCIENCEVol.39No.7Jul.201811112*131.5100062.5100063.510006C/N、、、、.、.NO-3-N、NO-2-N74.54±0.57mg·L-1、1.11±0.19mg·L-118h2.78±1.08mg·L-1、2.87±0.71mg·L-1TONNO-3-N+NO-2-N90.0%NO-3-NNO-2-N12.06mmol·L·d-1、7.74mmol·L·d-1..X703.1A0250-3301201807-3262-09DOI10.13227/j.hjkx.2017112202017-11-232017-12-2721377040517782832015B0202350052015A0202150081991~E-mail528296803@qq.com*E-mailhzhwu2@scut.edu.cnEvaluationofAdvancedNitrogenRemovalfromCokingWastewaterUsingSulfideIron-containingSludgeasaDenitrificationElectronDonorFUBing-bing1PANJian-xin1MAJing-de1WANGFeng1WUHai-zhen2*WEIChao-hai131.SchoolofEnvironmentandEnergySouthChinaUniversityofTechnologyGuangzhou510006China2.SchoolofBiologyandBiologicalEngineeringSouthChinaUniversityofTechnologyGuangzhou510006China3.KeyLaboratoryofPollutionControlandEcologicalRestorationinIndustryClustersMinistryofEducationGuangzhou510006ChinaAbstractIngeneralitisdifficulttoreachthetotalnitrogendischargestandardintheeffluentaftermunicipalandindustrialwastewatertreatment.TheproblemshinderingadvanceddenitrificationincludeanunstableC/Nratiointheinfluentwastewaterincreasedhydraulicloadingwithincreasingrefluxratioreducedreactionkineticshighenergyconsumptionandsecondarypollutionandhighsludgeyieldresultingfromadditionoforganiccarbonsources.Thereforedeepdenitrificationwiththeadvantagesofenergysavingsandeasyoperationisurgentlyneeded.Toaddresstheseissueschemicalironsulfidesludgecollectedafterthepretreatmentofsulfur-containingindustrialwastewaterwasusedasasolid-phaseelectrondonortoperformadvanceddenitrificationusingautotrophicdenitrifiers.Inthisstudythesecondarybiologicaleffluentofcokingwastewaterwastheinfluentfordenitrificationandtheperformanceofdenitrificationtransformationofsulfideandironinthesludgeandmicrobialcommunitychangeswereinvestigated.Theoptimalreactionconditionsandeffectrangeofthetechnologyfordeepdenitrificationofwastewaterwerethencalculated.WhentheconcentrationsofNO-3-NandNO-2-Nintheinfluentwere74.54±0.57and1.11±0.19mg·L-1respectivelythecorrespondingconcentrationsintheeffluentwerereducedto2.78±1.08and2.87±0.71mg·L-1respectivelywithahydraulicretentiontimeHRTof18h.TheremovalrateofTONNO-3-N+NO-2-Nwasashighas90.0%ofwhichthereductionrateofNO-3-NandtheaccumulationrateofNO-2-Nwere12.06and7.74mmol·L·d-1respectively.Thisstudyshowedthattheuseofchemicalsulfideironsludgeasanelectrondonorfordeepdenitrificationisofpracticalimportanceasitcouldsimplifythesubsequenttreatmentofsulfur-andiron-richchemicalsludgefinallyreachingthegoalofresourceutilization.Keywordssludgecontainingsulfurandironresourceutilizationcokingwastewaterautotrophicdenitrificationadvancednitrogenremoval7、、“”1.、、.NH+4-N5.0mg·L-1ATN15.0mg·L-123NO-3-N4.、.C/N、、567、COD89.S、S2-、Fe、Fe2+、H210~13、14~17.、.1418、.CEPA7192021.221Fe2++S→2-FeS↓1FeS2322425、pH、26..5FeS+9NO-3+8H2→O5FeOH3+4.5N2+5SO2-4+H+2NO-3-N、NO-2-N、NO-3-N、NO-2-N.11.1、A/O/H/O、27COD1.3×103~2.8×103mg·L-1143~535mg·L-1COD95.0%99.9%28.4℃1.1Table1MaincharacteristicsofbiologicallytreatedcokingwastewatersfromthesecondstageofShaogangWWTPCOD/mg·L-1TN/mg·L-1NO-3-N/mg·L-1NO-2-N/mg·L-1NH+4-N/mg·L-1UV254/cmCN-/mg·L-1S2-/mg·L-1B/CpH140~15075~8570~80<2<12.4~2.6<0.05<0.2<0.17.0~8.0TOCS2-1355.7mg·L-1523.7mg·L-11284.2mg·L-17.2mg·L-1.30min1LCOD5.0mg·L-1.1L10mL0.37g1L37g·L-1.EDS150μmFe51.55%362339S18.93%C15.40%O11.77%Na1.67%Ca0.56%Al0.13%FeS70.48%.1MEDSFig.1SEMofsludgeandEDSpointanalysisofsludgemarkedM1.2UASB2.5cm50cm1000mL10cm45cm.、、、..2Fig.2Integratedverticalup-flowbiologicalsuspended-bedreactor6UASBUASBNa2S2O3·5H2O5.00g·L-1、NaNO32.00g·L-10.74g·L·d-1Thiobacillus25.73%.0.30LMLSS=3.69g·L-10.40L37.0g·L-150mL·min-120minDO<0.10mg·L-1.HRT、、pH、.90d25℃2d.351000mL.1.30.45μm.pHpHSX731、EVOLUTION300ThermoScientificCODCODDR3900HACHTOCTOCTOC-VcpnShimadzuNO-3、NO-2、SO2-4ICS-900DionexTONNO-3-NNO-2-NUV254EVOLUTION300ThermoScientificXGENESISXMEDAX.1.4EzupDNADNA.200mgBufferSCLDNABufferSPBufferSB.DNA-20℃.DNAPCR1%DNA.PCR16SrRNAV4-V516SrRNA515F/907R.515F462375'-GTGCCAGCMGCCGCGGTAA-3'907R5'-CCGTCAATTCMTTTRAGTTT-3'.2xPremixTaqTakaraDalianCo.Ltd25μL、Primer-F10mmol、Primer-R10mmol、DNA60ng50μLPCR.PCR94℃4min94℃30s52℃30s72℃30s72℃10min4℃.DNA.22.12.1.13Fig.3DenitrificationperformanceofthereactorduringthestableoperationperiodHRT.390dTON、NO-3-N、NO-2-N.TON75.37±1.42mg·L-1、NO-3-N98.96%HRTHRT24h95%TONNO-3-N、NO-2-N2.27±1.09mg·L-1、1.55±1.25mg·L-1.HRT18hNO-3-N、NO-2-N8.55±1.68mg·L-1、25.45±3.65mg·L-1NO-2-N34.05%.HRT.TON4.20mg·L·h-129Li18FeS2NO-3-N..2.1.2NO-3-N、NO-2-N.43NO-3-N、NO-2-N、SO2-4.NO-3-N、NO-2-N75.31mg·L-1、1.58mg·L-16hNO-3-N4.29mg·L-194.15%NO-2-N48.02mg·L-161.67%6~18hNO-3-NNO-2-N48.02mg·L-10.78mg·L-112hNO-2-N22.44%HRT=12hNO-2-N18hTON1.52mg·L-198.02%HRT=18h.4Fig.4DenitrificationperformanceoftheintermittentlyoperatedreactorpH23dNO-3-Ndt=-KNO-3-Nn3562339NO-3452FeS+9NO-3+5H2→O2FeOH3+9NO-2+2SO2-4+4H+43FeS+9NO-2+6H2→O3FeOH3+4.5N2+3SO2-4+3OH-5NO-2-N6dNO-2-Ndt=-dNO-3-Ndt-dNO-2-Ndt=KNO-3-Nn-KNO-2-Nm=K-K'=K″6m、nKNO-3-Nmmol·L·d-1K'NO-2-Nmmol·L·d-1K″NO-2-Nmmol·L·d-1.NO-3-NNO-2-N3031.R22.12.06mmol·L·d-17.74mmol·L·d-1NO-3-N.2Table2Kineti