20167477doi10.6041/j.issn.1000-1298.2016.07.028112132211.7121002.1001253.712100PTC8m3216077.31kJ/d23180.01kJ/d。b2.4mf0.6m4.16m20.0168m。Fluent35℃。PTC33.6~35.8℃Fluent。S216.4TK11+2A1000-1298201607-0202-062016-01-072016-02-29201503135-181979—E-mailtzgkyxm@163.com1957—E-mailql2871@126.comDesignandImplementationofParabolicTroughConcentratorHeatingAnaerobicReactorYangXuanmin1WangYajun12QiuLing13ZhaoLixin2JiaJixiu2WangXiaoliang11.CollegeofMechanicalandElectronicEngineeringNorthwestA&FUniversityYanglingShaanxi712100China2.InstituteofEnergyandEnvironmentalProtectionChineseAcademyofAgriculturalEngineeringBeijing100125China3.WestScientificObservingandExperimentalStationofRuralRenewableEnergyExploitationandUtilizationMinistryofAgricultureYanglingShaanxi712100ChinaAbstractForananaerobicfermentationsystemthetemperatureisoneofkeyfactorswhichaffecttheefficiencyofbiogasproduction.AparabolictroughconcentratorPTCwasusedastheheatsourceforan8m3undergroundanaerobicdigester.Toimprovetheefficiencyofconcentratingsolarcollectorsandthebiogasproductivityoftraditionalanaerobicfermentationsystemthesizesofimportantcomponentsinthedigesterweredeterminedandtheenergybalancewasalsocalculated.MoreovertheanglechangeofsolarconcentratorinYanglingwascountedtheangleofthecollectorduringoneyearwasoptimizedandtheinclinationangleandinstallationmethodoftheconcentratorbracketwerealsodesigned.Itwasfoundthatfeedheatloss16077.31kJ/dandwallheatloss23180.01kJ/dwerethetwomainheatloadsinthissystem.ThekeyparametersofPTCweredeterminedthesizeofaperturewas2.4mthefocaldistancewas0.6mtheareaofcollectorwas4.16m2andthediameterofcollectorpipewas0.0168m.InadditiontheheattransferofanaerobicreactorwassimulatedthroughFluentsoftware.Thesimulationresultsrevealedthatinteriortemperatureinthedigestercouldbemaintainedat35℃.APTC-basedanaerobicdigesterwithsimilarparametersofsimulationmodelwasdesignedtoverifythesimulationeffect.Theexperimentresultsindicatedthatthetemperaturerangeofmaterialliquidinthereactorcouldbekeptat33.6~35.8℃approximatelyconsistentwiththeFluentsimulation.Theresultsinthisstudyprovideanewsolutionforefficientandlow-costbiogasfermentationdevice.Keywordsanaerobicreactorparabolictroughconcentratorsteadysimulation1、、2-3。、、4-7。、、8。ParabolictroughconcentratorPTC9。2007PTC6400kW·h14。PTC、、10。8m3。。1PTC1.11.1.1PTC、、、、1。8m3PTC11。1.1.2Qj、Qloss、Qq12。Qsolar、QeQr2。QqQrQq=0Qr=0ρmvmCmdTmdt=Qe+Qsolar-Qloss-Qj11PTCFig.1StructurediagramoffermentationdevicebyPTCheating1.2.3.4.5.6.7.8.9.2Fig.2Schematicpresentationofthermalbalanceofanaerobicreactorρm———kg/m3vm———m3Cm———kJ/kg·KTm———℃t———sρmvmCmdTmdt=01Qsolar-Qloss-Qj=021.1.2.1Qj13Qj=CmMtd-ts3M———kg/dtd———℃35℃ts———℃tata=ts=5℃8m312.8kg10%M=12.8kg10%=128kg3027Cm=4.1868kJ/kg·K。Qj=16077.31kJ/d。1.1.2.2Qloss114U=11a1+δλ+1a24a1———336W/m2·Ka2———0.47W/m2·Kδ———0.2mλ———1.543W/m·KU=0.4425W/m2·K。215f1=25R5f2=27R6V=0.36πR3+πR2h7S=2VR+1.52πR28f1———mf2———mR———m8RR=1.188mS=20.21m2。38m3。3Fig.3Geometricalsizeofanaerobicreactor3QlossQloss=UStd-ta=23180.01kJ/d9Qsolar=39257.32kJ/d。1.2PTC1.2.116。Vmin=Qsolarcρtguan-tliao10Vmin———m3c———kJ/kg·Kρ———kg/m3tguan———℃75℃tliao———35℃Vmin=0.23m3。1.2.217Ac=Qsolarf0Itηcd1-ηc11Ac———m2It———14.145MJ/m2·df0———0.6ηcd———0.5ηc———0.2Ac=4.16m2。1.2.34Fig.4ConcentrationefficiencyofPTC4b。18。n=4K=68.4。b=2.4m。f=b/n=0.6mdmin(=2f+14fb2)2sinD212D———0.53°dmin=0.0168m。40220161.2.4b1=τ-δ113τ———N34°16'b1———δ1———2012—20145。53Fig.5Statisticresultofaveragesolardeclinationinrecentthreeyears136。6Fig.6Changingcurvesofheatcollectorangle1.2.5GB27—88。721261—57—11。2FluentGambit。7Fig.7ModelofPTC2.175℃①1/4。②。③。④19。8。。GambitinterfaceFluent。8Fig.8Geometricalmodelofreactor1.2.3.4.5.6.2.2Tgrid2072984642016726224089441339。9Fig.9Gridofmodel2.30.0168m50270.03m。35℃750℃。150L/h0.06m/s。50℃。22.5W/m2HeatFlux。。1035℃。10PTCFig.10SimulationresultofPTCheatinganaerobicreactor2.420151125。4.2m2、0.25m3、8m3、、11。5d1130120.1℃11.2℃37.2℃78.4℃33.6℃35.8℃。PTC8m334.7±1.1℃Fluent。11PTCFig.11PhotoofPTCheatinganaerobicdigester1.2.3.12、Fig.12Variationsofwatertemperatureenvironmenttemperatureandbiogasdigestertemperature31PTC16077.31kJ/d23180.01kJ/d。2PTCPTCb2.4m、f0.6m、0.0168m。3PTC35℃。1CHRISTIAENSENLHEITBERGR.GreeningChina’sruralenergynewinsightsonthepotentialofsmallholderbiogasJ.Environment&DevelopmentEconomics20141918-29.2CHENYYANGGSWEENEYSetal.HouseholdbiogasuseinruralChinaastudyofopportunitiesandconstraintsJ.RenewableandSustainableEnergyReviews2010141545-549.3RAJENDRANKASLANZADEHSTAHERZADEHMJ.HouseholdbiogasdigestersareviewJ.Energies2012582911-2942.4SANDERBLARSJVANVetal.Small-scalehouseholdbiogasdigestersanoptionforglobalwarmingmitigationorapotentialclimatebombJ.RenewableandSustainableEnergyReviews2014332736-741.5FERRERIGARFIMUGGETTIEetal.Biogasproductioninlow-costhouseholddigestersatthePeruvianAndesJ.BiomassandBioenergy20113551668-1674.60220166.J.2014455160-165.XIAJiqingWANGNingningWANGXiaodongetal.DesignofhotwaterwithheatpipeforbiogassystemJ.TransactionsoftheChineseSocietyforAgriculturalMachinery2014455160-165.inChinese7GAUTAMRBARALSHERATS.BiogasasasustainableenergysourceinNepalpresentstatusa