:1001-4829(2009)03-0786-05:2009-03-30:(081600226);(GXDX200726);(CC160012):(1971-),,,,1,2,1,1,1,1(1.,530005;2.,230001):,(AcorusCalamus)(ToninaFluviatilis)(Hygrophiladifformis)3,368.43279.31mg23.44170.13mg;9.1142.79mg10.8128.71mg,,;,3,TNTP52.0%72.4%51.7%77.1%TNTP,::;;:X322:AStudyonRemovalEfficiencyofNitrogenandPhosphorusfromSewagebyAquaticMacrophtesunderTwoCultivationModesZHANGChao2lan1,CHENXiu2juan2,WEIBi2mao1,LIZhi2gang1,LIUShuai1,LIQin2feng1(1.DepartmentofAgriculturalResourcesandEnvironmentalScience,AgriculturalCollege,GuangxiUniversity,GuangxiNanning530005,China;2.AnhuiNanfengEnvironmentalEngineeringTechnologyCompany,AnhuiHefei230001,China)Abstract:Basedonthelaboratorybuildingthesmallaquaticecosystem,removalefficiencyoftotalnitrogen(TN)andtotalphosphorus(TP)byAcorusCalamus,ToninaFluviatilisandHygrophiladifformiswithsubmergedandemergedcultivationwasresearched.TheresultsshowedthatthecontentofTNwas68.43-279.31and23.44-170.13mginshootsandinroots,respectively.ThecontentofTPwas9.11-42.79mgand10.81-28.71mginshootsandinroots,respectively.ThehighestcontentofTNandTPwasinHygrophiladifformis,andthenToninaFluviatilis,thelowestinAcorusCalamus.AndthecontentofTNandTPwashigherbyemergedthanbysubmergedtreatment,butitwasnotsignificateddifferentatthesamespieceaquaticsplant.Comparedwithcontrol,theremovalefficiencyofTNandTPweresignificateddifferentwithhydrophytes.TheaverageremovalratetoTNandTPwas52.0%-72.4%and51.7%-77.1%,respectively.Thecomprehensivee2valuationresultindicatedthat,accordingtoplantremovalabilitytoTNandTP,theorderwas:ToninaFluviatilis(emerged)Hygrophiladif2formis(emerged)Hygrophiladifformis(subemerged)AcorusCalamus(emerged)AcorusCalamus(submerged)andHygrophiladiffor2mis(emerged).Keywords:Aquaticmacrophtes;Emerge;Submerge,,,,,,[12],,,,,[37],[810][1115]687SouthwestChinaJournalofAgriculturalSciences2009223Vol122No13,3,,,,1111(AcorusCalamus)(ToninaFlu2viatilis)(Hygrophiladifformis),,,,;,,;,[1617]1112,2113,14d,,,,20cm,110L,14d1,1,4,,,,,,,,,,31Table1ThecontentofTNandTPofaquaticmacrophtesintheex2periment(gkg-1)(gkg-1)5.235.116.511.6214.523.413.210.7621.614.207.682.972Table2CharacteristicsofthesewageintheexperimentTN(mgL-1)TP(mgL-1)CODCr(mgL-1)DO(mgL-1)(Scm)pH1.332.350.090.2340.2445.895.235.863183657.58.2114CODCr;TN,;TP,;pH;[18],,;,[19](P):P=CM,C,M()22113,,3,,4,,5;4,,,0.67cm,;,50d,,,4,6,;212356d,4.433.4(3),(P0.01)3,,,,,,,,7873:3Table3Thebiomassandheightofaquaticplants(cm)24.701.0524.001.8930.101.5835.101.3331.301.7167.552.3466.902.1240.901.9980.002.5779.801.681.71.80.41.31.5()(g/)38.271.0341.011.0221.601.0223.771.1019.291.06208.472.01332.182.14236.571.04528.113.03663.984.304.47.110.021.233.4()(g/)3.000.216.201.5322.320.5417.040.9720.921.252.890.198.400.927.151.067.671.7311.780.65/1.00.73.12.21.8:5,,,,5.6,,,,,,,,,,213NP39.0122.81gkg-11.913.11gkg-1,5.9719.66gkg-11.803.74gkg-1(4),,,3,,,,:(),:(r=0.8392,n=5),(r=0.9636,n=5),[14],4;[9][7],,[20],,,[10],214TN3TN(1),,TN(72.4%),4NPTable4ThecontentofTNandTPofaquaticmacrophtesindifferenttreatments(gkg-1)(gkg-1)(mg)(mg)CD22.810.158.110.573.110.193.740.1868.432.7623.443.549.110.8310.812.41TD17.601.255.970.372.250.242.290.16109.095.2950.233.1914.100.9319.761.04TT9.010.847.550.451.920.361.800.14201.437.1254.111.3542.792.5413.040.83CS16.420.8519.661.732.610.743.110.75279.316.43150.787.1042.333.4120.142.03TS12.560.5714.431.261.910.852.430.47262.195.49170.136.9140.163.5728.712.67:CD,TD,TT,CS,TS,CCK,TCK,88722IIIIIIIV014d1528d2942d4256d1TNFig.1TheremovalratioofTNbyaquaticmacrophteswithsub2mergedandemergedcultivation(66.6%)(62.5%)(61.3%)(52.0%),(3)TN,TN,,,[21],,,,,215TP,3TP,4TP51.7%77.1%(2),,,,,,,71.4%90.0%,TP[21][22]JosephK[23],,,,,TP,IIIIIIIV014d1528d2942d4356d2TPFig.2TheremovalratioofTPbyaquaticmacrophteswithsub2mergedandemergedcultivation3(1),,,,,(2)3,,,(3),,;,,,,,,,,,,,:[1]NALBURB,AKCAL,BAYHANH.NitrogenRemovalduringSec2ondaryTreatmentbyAquaticSystem[J].WaterScienceandTech2nology,2003,48(11-12):355-361.[2]SATOK,SKULH,SAKAIY,etal.Long2termExperimentalStudyoftheAquaticPlantSystemforPollutedRiverWater[J].WaterScienceandTechnology,2002,46(11-12):217-224.[3]PARESHL,BILLF.RelationshipsBetweenAquaticPlantsandEnvi2ronmentalFactorsAlongaSteepHimalayanAltitudinalGradient[J].AquaticBotany,2006,84(1):3-16.[4]SARAHJ.EffectsofWaterLevelandPhosphorusEnrichmentonSeedlingEmergencefromMmarshSeedBanksCollectedfromNorth2ernBelize[J].AquaticBotany,2004,79(4):311-323.[5]NINAC,JENSCS,NIELHS.SensitivityofAquaticPlanttotheHerbicideMetsulfuron2methyl[J].EcotoxicologyandEnvironmentalSafety,2004,57(2):153-161.[6],.[J].,2003,14(8):1351-1353.9873:[7],,,.[J].,2007,19(7):505-509.[8],,,.[J].,2004,13(5):39-45.[9],,,.[J].,2004,24(8):1718-1723.[10],,.[J].,2006,28(12):902-907.[11],,,.[J].,2005,27(6):401-406.[12].NPCl[J].,2000,24(5):613-616.[13],,,.COD[J].,2004,15(12):2337-2341.[14],,.NPK[J].(),2005,22(3):264-268.[15],,,.[J].,2002,3(7):13-17.[16],.[M].:,2004.146.[17].[M].:,2004.208.[18].()[M].:,2002.[19].()[M].:,2000.[20],,,.[J].,2008,23(2):217-222.[21],,,.[J].,2005,11(5):597-601.[22],.[J].,2008,20(2):135-138