“”50%[1]。C/N[2-4]。[5]。VFA[6-13]。、“”。40×103m3/d4:6“+CAST+”。“”。1COD190.1~313.3mg/LBOD5122.5~225.9mg/LpH7.4~7.6SS、TP、TN、NH4+-N、PO43--P203.5~244、5.26~9.03、40.4~59.1、28.9~40.7、3.25~7.06mg/L。COD/ρ(TN)4.7~5.3C/N。21。21500912.5m3/dC/N。44%~50%46.26~61.36kg39.76/t3.5。C/N。X799.3A1000-3770(2016)06-0124-0032015-11-26TH20122021990-13914064009550851972@qq.comhuangtianyin111@sohu.com1Fig.1Pilotsystemprocessingflowchart42620166Vol.42No.6Jun.,2016DOI:10.16796/j.cnki.1000-3770.2016.06.028124CAST。CASTpH6.62~7.35COD18.6g/LSCOD68~110mg/LTS10~13g/LVS63.8%~65.1%TOC、、NH4+-N、PO43--P28.88、12.4、2~10、5.0~10mg/LVFAs0。4m10m125m3。35~50℃。pH7.0。280d。SRT=10d、300%[14]。VFAs284.6mg/Lm(VFAs)/m(VS)0.58g/g。12.5m3/dTS10~13g/LTS125~163kg。80%0.315~0.455t/dTS63~91kg。44%~50%。1a1。1N、P。N、P。NaOHpH9[15]。Mg、P2:1MgCl2。PO43--PNH4+-N97.28%、87.35%1.6kg/d73.06%。N、P。SBRPO43--P、TN79.8%、71.4%[17]。C/N。VFAs[9,11]。。33.1。62.2137.91、24.302。。19.59kW·h1.0/(kW·h)E1=1.57/m32Tab.2TheequipmentcostpHpHqV=10m3/hH=36mqV=8m3/hH=30mH=9mP=105WLD-25FpH/ORPpH-620qV=8m3/hH=30m15m3/dLD-25FpH/ORPpH-6201111323111110.01.00.90.91.20.60.60.92.20.60.610.01.00.90.93.61.21.80.92.21.20.6/TOCSCOD82.52.24131.7516.6756.6651.844203907.4476.7821Tab.1QualityofsludgefermentationliquidNH4+-Nρ/(mg·L-1)PO43--P12519.597150.35。。、3.2、1kg1.8、0.8/kgE2=0.52/m36.562394.4。2.09/m3。3.2。TS10~13g/LVS63.8%~65.1%、0.58g/g46.26~61.36kg。6.8/kg417.25。。。60%44%~50%(12.5m3/d)×(0.01t/m3)×50%/60%=0.104t。、、、1000/t104.0。。1.6kg1.2/kg1.92/d。1/3。N、PN、P。+26.15/d523.17/d497.0239.76/t18.14。62.213.5。444%~50%46.26~61.36kg39.76/t3.5。C/N、。。[1],,,.[J].,2012,30(5):17-20,27.[2]NybergUlf,AnderssonBengt,AspegrenHenrik.Long-termexperienceswithexternalcarbonsourcesfornitrogenremoval[J].WaterScienceandTechnology,1996,33(12):109-116.[3],LarsenSilleBendix,PetersenGert,.[J].,2011,27(22):30-35.[4],,,.[J].,2010,36(11):125-128.[5]JieYU,Ning-ningTian,Kai-junWang.Discussiononthetechnicalpolicyofsludgetreatmentanddisposalinchina[J].ChinaWater&Wastewater,2005,21(8):84-87.[6]JTong,YChen.Recoveryofnitrogenandphosphorusfromalkalinefermentationliquidofwasteactivatedsludgeandapplicationofthefermentationliquidtopromotebiologicalmunicipalwastewatertreatment[J].WaterResearch,2009,43(12):2969-2976.[7]LimSeong-Jin,KimEun-Young,AhnYeong-Hee,etal.Biologicalnutrientremovalwithvolatilefattyacidsfromfoodwastesinsequencingbatchreactor[J].KoreanJournalofChemicalEngineering,2008,25(1):129-133.[8]XZheng,JTong,HLi,etal.Theinvestigationofeffectoforganiccarbonsourcesadditioninanaerobic-aerobic(lowdissolvedoxygen)sequencingbatchreactorfornutrientsremovalfromwastewaters[J].BioresourceTechnology,2009,100(9):2515-2520.[9],,,.A2/O[J].,2009,25(17):23-27.[10],,,.[J].,2013,29(4):12-16.[11],,,.[J].,2015(3):1000-1005.[12],.EBPR[J].,2013,34(7):2741-2747.[13],,,.[J].,2011,5(11):2519-2526.[14].[D].:,2014.[15]OhlingerKN,YoungTM,SchroederED.Predictingstruviteformationindigestion[J].WaterResearch,1998,32(12):3607-3614.[16],,,.[J].,2010,30(5):897-907.[17].[D].:,2015.130426126ComprehensiveAnalysisofSludgeAnaerobicAcidFermentationinthePilot-ScaleUrbanWastewaterTreatmentPlantWeiPeng,LiHuai,HuangTianyin,LiuFeng,ZhangTao(SchoolofEnvironmentalscienceandEngineering,SuzhouUniversityofScienceandTechnology,Suzhou215009,China)Abstract:Theprocessingflowandoperationalparametersoftheapparatuswereintroducedinthiswork.Theoperationalresultsandtheeconomicanalysisofthesystemwereconductedbasedonthepilot-scaledsludgeanaerobicacidfermentationinthehybridurbanwastewatertreatmentplantwithdailycapacityof12.5cubicmetersatlowC/N.Theresultsshowthat46.6~61.36kgofdailyacidproduction,44%~50%ofsludgereductionand3.5aofinvestmentpaybackperiodwereachieved.Thesludgereductionanditsrecyclingalongwiththeenvironmentalandeconomicbenefitswerepreliminaryaccomplishedinthemiddle-scaledsystem,whichcanbegreatlypromotedinthetreatmentofpoorwaterquality.Keywords:excesssludge;anaerobicfermentation;pilot-scale;carbonsource;economicbenefitsTechnologicalEconomyAnalysisofWind/PVHybridDesalinationSystemLiuXiwen,ZhaoHeli,YanYulian,PanChunyou,LiLu,LiuXiaoyu(TheInstituteofSeawaterDesalinationandMultipurposeUtilization,SOA(Tianjin),Tianjin300192,China)Abstract:Taking5m3/dwind/PVhybridROdesalinationdeviceasanexample,processscheme,equipmentselection,controlmodeandpowerandpowerconsumptionofthedevicearedescribed,andtheeconomicsfromthreeaspectssuchasinvestmentcost,operationandmaintenancecostsandwaterproducingcostareanalyzed.Theresultshowedthatthetreatmentcostofthisdevicewas13.77yuan/m3.Theeconomicinfluencefactorsofwind/PVhybriddesalinationsystemaresummarized,anditwassuggestedthatmuchattentionshouldbepaidtocrucialquestions,suchasthecontrolofthechargeanddischargeofbatteries,theoptimizationofROdesalinationandthereasonableselectionofhighpressurepumpandenergyrecoverydevice,toimprovetheeconomicsofthewind-lightcomplementaryROdesalinationsystem.Keywords:wind/PVhybrid;reverseosmosis(RO);seawaterdesalination;economicanalysis、RO、RO。[1],,.[J].,2010,161(4):54-56.[2],,,.[J].,2012,10(3):231-235.[3],,,.[J].,2012,38(7):92-94.[4].[D].:,2011.[5].———[D].:,2006.[6].[J].,2014(9):14