26920139ResearchofEnvironmentalSciencesVol.26No.9Sep.2013.J.20132691014-1021.YUANRongfangTIANYeSHIChunhongetal.OptimizationofozonedistributionmethodintheozonecontactorJ.ResearchofEnvironmentalSciences20132691014-1021.2013-03-212013-07-17511780432009ZX07424-0031986-yuanfang_ustb@126.com.*1963-zhoubeihai@sina.com12121212*331.1000832.1000833.100085O3.ρO3、.3ρO3.3∶3∶178.1%47.5%3mgL76.8%40.3%ρO30.26mgLBrO3-.X524A1001-6929201309-1014-08OptimizationofOzoneDistributionMethodintheOzoneContactorYUANRong-fang12TIANYe12SHIChun-hong12ZHOUBei-hai12GUJun-nong3ZHANGChun-lei31.KeyLaboratoryofEducationalMinistryforHighEfficientMiningandSafetyinMetalMineUniversityofScienceandTechnologyBeijingBeijing100083China2.DepartmentofEnvironmentalEngineeringSchoolofCivilandEnvironmentalEngineeringUniversityofScienceandTechnologyBeijingBeijing100083China3.WaterQualityMonitoringCenterBeijingWaterworksGroupBeijing100085ChinaAbstractThepollutionofsurfacewaterisbecomingmoreandmoreseriouswiththeeconomicdevelopment.Therequirementsforthedrinkingwaterqualitywashigherthanbeforesincethe“StandardsforDrinkingWaterQuality”GBT5749-2006wasimplemented.Inordertoremovetheorganicpollutantsozonationwasemployedasatoolinthedrinkingwatertreatmentprocessandtheozonecontactorwasusedtomakeozonediffusedintothewater.Theozonedistributionisakeyfactortothereactionefficiencybetweenozoneandtheorganicpollutantinozonecontactor.TheinfluenceofozonedistributionintheozonecontactoronmasstransferefficiencyO3contentandorganicremovalefficiencywasinvestigatedwhilewatersampleswerecollectedfromtheMiyunReservoir.Thegas-liquidmasstransferwasenhancedandtheremovalefficiencyoforganicpollutantwasimprovedwhenthenumberofaerationpointincreased.Howeverthemasstransferefficiencyofozoneshowednosignificantincreasewhenfour-pointaerationwasused.MoreoverO3contentintheeffluentwaterwastoohighforthefollowingprocess.Themasstransferefficiencyofozoneinthewaterwas78.1%andtheremovalefficiencyofoganicswas47.5%whenthree-pointaerationwasusedwiththeproportionof3∶3∶1.Whenhumicacidof3mgLwasaddedinthewatersamplesthemasstransferefficiencyofozonewas76.8%andtheremovalefficiencyofoganicswas40.3%usingthesamemethod.TheO3contentintheeffluentwaterwas0.26mgLwhichwouldnotdestroythebiofilmonthesurfaceoftheactivatedcarboninbiologicalactivatedcarbonprogress.Attheproportionof3∶3∶1theutilizationratioofozonevaluewasthehighest60.1%andthegenerationamountofbromatewasthelowest.Thereforethebestmethodofgasdistributioninozonecontactorwasthree-pointaerationwiththeproportionof3∶3∶1.Keywordsozonecontractordistributionmethodthree-pointaerationmasstransferefficiencydrinkingwater9.200771GBT5749—2006《》.、1-3.4-6.78-10.、11...Kim1210.15m、2.74m、Kumar136.4cm、39cmpHρO3Kim142Ⅰ1.05m、、Ⅱ0.69m、、.2~37151.5~2.5mgLρO30.2~0.4mgLHRThydraulicretentiontime10min16..40%~50%1718-1920.UV254、、ρTOC、ρCODMnρ21-22.ρO3UV254ρO3、.11.13mgL、BrO3-.1.1Table1Characteristicsofthewater℃pHρDOmgLNTUρCODMnmgLUV254cm-117~258.1~8.66.2~8.10.98~1.531.97~2.690.032~0.04820~227.5~7.76.0~7.83.26~3.553.44~4.060.221~0.2361.241.2m100mm65L30mm50mm0.2~100.0μm4400mm.FY5WGQ-TG10S.1.3HRT750s5.2Lmin2.5mgL.ρO3ρO3.ⅣⅠⅣⅠⅣ、、、Ⅰ、Ⅰ、Ⅱ、Ⅰ、Ⅱ、Ⅲ4.HRT15minⅠ1HRT30、70、110、150、220、260、300、340、410、450、490、530、600、640、680、720750sρO35101261~17mm.1Fig.1TheschematicoftheinstallationUV254.23.masstransferefficiencyMETMTE=ρQ-ρQρQ×100%1ρρO3mgLQLminρρO3mgLQLmin.1.4CJT3028.2—1994《、、》ρO3.DR5000UV254.50mL1cm254nmGBT5750.10—2006《》.ICS-1000ρBrO3-.22.12.1.12ρO3.ρO3HRTHRT150sρO30.940.96mgLρO3ρO30.400.47mgL.51.2%60.6%.24-252ρO3Fig.2Influenceofone-pointozonedistributiononozoneconcentration61019.UV25422.7%Ⅰ5.5%ⅡρO313.2%Ⅲ、ⅣρO3.、60.6%..2.1.2Ⅰ50%~80%15.51∶1、2∶1、3∶1、3∶24∶167.7%、65.7%、62.3%、75.5%60.2%ρO33、4.1—1∶12—2∶13—3∶14—3∶25—4∶1.3ρO3Fig.3Influenceoftwo-pointozonedistributiononozoneconcentration3ρO3HRT.ⅠρO3ρO3.ρO3.Ⅰ.Ⅰ.3∶2ρO31.06mgLρO30.70mgL.4Ⅰ、Ⅱ12%~18%11%~17%Ⅲ、ⅣρO31%~10%.Ⅰ4Fig.4Influenceoftwo-pointozonedistributiononremovalefficiencyoforganicpollutantρO3ⅡρO3Ⅲ、ⅣρO3..ⅠⅠ.3∶245.8%.2.1.315Ⅰ、Ⅱ、Ⅲ80%~40%、10%~30%10%~30%.101∶1∶1、2∶1∶1、2∶2∶1、3∶1∶1、3∶2∶1、3∶3∶1、4∶1∶1、4∶2∶1、4∶3∶14∶4∶1.87.7%、76.2%、81.6%、67.1%、82.0%、78.1%、68.0%、66.6%、73.3%69.4%.5HRTρO3.ⅠρO3340sⅡρO3ⅢρO3490s.1∶1∶1、3∶2∶1、2∶2∶1、3∶3∶12∶1∶1.3∶3∶1ρO3.5.61∶1∶152.9%7101261—1∶1∶12—2∶1∶13—2∶2∶14—3∶1∶15—3∶2∶16—3∶3∶17—4∶1∶18—4∶2∶19—4∶3∶110—4∶1∶1.5ρO3Fig.5Influenceofthree-pointozonedistributiononozoneconcentrationⅠ30%Ⅲ、Ⅳ.ⅠUV254ⅡUV254Ⅲ、Ⅳ.ρO33∶3∶147.5%.6Fig.6Influenceofthree-pointozonedistributionmethodonorganicpollutantremovalefficiency2.1.43∶3∶1∶1、4∶3∶2∶14∶4∶1∶181.4%、80.4%73.9%.7ρO3HRTρO3.3∶3∶1∶1851.3%Ⅰ、Ⅱ30%4∶4∶1∶1Ⅰ.ρO3.1—3∶3∶1∶12—4∶3∶2∶13—4∶4∶1∶1.7ρO3Fig.7Influenceoffour-pointozonedistributiononozoneconcentration8Fig.8Influenceoffour-pointozonedistributionmethodonorganicpollutantremovalefficiency810192.2ρO3、、ρO3.53mgLρO3、.2.2.1ρO31∶1∶1、3∶2∶1、2∶2∶1、3∶3∶12∶1∶176.0%、68.8%、64.9%、76.8%76.4%ρO3HRT9.1∶1∶13ρO3HRT530s0.79mgLⅣρO30.77mgL.3∶3∶1ρO3340s0.55mgLρO30.26mgL.1—1∶1∶12—2∶1∶13—2∶2∶14—3∶2∶15—3∶3∶1.9ρO3Fig.9Influenceofozonedistributionmethodonozoneconcentrationafteraddinghum