40 120082西安建筑科技大学学报()J.Xi′anUniv.ofArch.&Tech.(NaturalScienceEdition)Vol.40 No.1Feb.2008崔玉波1,郭智倩2,姜廷亮2(1.,116600;2.,130021) :.,7℃-30℃80d.:COD,TP;5℃,、,TNTN.,HLR9.6cm/d,CODTP50%~70%60%,NH4-NTN.,HLR7cm/d3.93cm/d,COD60%85%,TP100%,NH4-N77%~100%71%~100%,TN38%~50%64%~80%.,TN,,0.727gTN/(m2·d)0.588gTN/(m2·d).:;;;:X703.1 :A :1006-7930(2008)01-0121-06 .*,,,.1970(ConstructedWetland,CW),,[1].[2],、[3-5]..,,,[6-7].,.1 试验装置与方法,.1.ABR,,9.7L,39L,.,.HRT3h.,3.,..0.15m×0.94m×0.56m;3.34m×0.94m×0.56m,0.18m.1.2m3,0.485m3,40.4%.0.38m.0.1m,2~7cm;0.14m,0.1~1cm;0.14m,0.1~0.3cm.,0.1m.0.32m.,,,0.3m.1.245m×0.92m×0.52m,0.17m.0.403m3,0.075m3,18.6%.0.1m,2~7cm;0.25m,0.1~0.3cm.,0.1m.*:2007-06-08 :2007-12-12:(04-2-067);(20076204):(1968-),,,,,:、.DOI:10.15986/j.1006-7930.2008.01.002图1 试验装置结构及流程图Fig.1 Schematicofexperimentalinstallation 图2 系统进出水温度及气温变化Fig.2 Wastewatertemperaturevariatio、、,.:COD130~350mg/L;NH4-N20~35mg/L;TP1~2.3mg/L;pH6.5~7.5.,2004111(2004211d)2005120,,80d,7℃~30℃.1.1 Tab.1 Theoperationparametersofconstructedwetlands(CW)Item2ndstageCW1ststageCWPeriod2004-11-01-12-112004-12-12-2005-01-202004-11-01-2005-01-20Flowrate/L·d-18045300HRT/d0.941.671.5HLR/cm·d-173.939.62 保温措施及温度变化.-30℃,1.7m.,.,,20cm.40cm,.,..2.2,11112110℃-3℃;8℃11.5℃5℃9℃;6℃9℃1.5℃6℃.1211,,-9℃-16℃,.6℃9℃2℃3℃;5℃0℃0.5℃.3 结果与讨论3.1 3COD.,COD.,251d,,COD.20051211,,22.2gCOD/(m2·d)11.7gCOD/(m2·d),.,,COD,,HLR7cm/d3.93cm/d,4.86gCOD/(m2·d)3.1gCOD/(m2·d).122 () 40,20041211COD69.4%,,(5℃,2),.20041211,-10℃,5℃,COD70%50%,.图3 冬季人工湿地进出水COD历时变化Fig.3 CODvariationwithrunningtimeinwinter 图4 冬季人工湿地进出水NH4-N历时变化Fig.4 NH4-Nvariationwithrunningtimeinwinter,,59.5%84.7%,,,COD,.,,.3.2 3.2.1 NH4-N的去除NH4-N4.,NH4-N,.,,,NH4-N.NH4-N,NH4-N,、.、,NH4-N.,.,NH4-N.,,0.05m,.4,11,NH4-N,,,5~6mg/L..NH4-N.COD0.4g,C5H7O2N[8],48.7mg/LCOD,0.4mg/LNH4-N,NH4-N3%.NH4-N.71%NH4-N,,.NH4-N.NH+4.NH4-N,NH4-N,.,NH4-N.,NH4-N.3.2.2 湿地系统中的硝化与反硝化作用,NH4-N,1231 :、,NH4-NN2.NO3-NTN56.,.10℃,5℃,..NO3-N(5),.NO3-N.,:20041111211(211d251d);200412122005120(252d290d).NO3-NNH4-N,(10~5℃),NO3-N.,,,.,,5℃.NH4-N,,NO3-N,..,2~0℃.7cm/d3.93cm/d,,.图5 冬季人工湿地出水NO3-N历时变化Fig.5 NO3-Nvariationwithrunningtimeinwinter 图6 冬季人工湿地进出水TN历时变化Fig.6 TNvariationwithrunningtimeinwinterTN,TN,DO,.TNNH4-N..,TN,38%,80%.,TN,,TNNOX-NNH4-NNOX-NN2.NOX-N,NH4-NNO3-N,N2.[8].TN(64%~80%)(38%~50%),.,,0.727gTN/(m2·d),0.588gTN/(m2·d).,.,,,.,5℃.3.3 TP7TP.TP60%,TP100%,100%.,.、,.,124 () 40图7 冬季人工湿地TP历时变化Fig.7 CWinfluentandeffluentTPvariationwithrunningtimeinwinter.、.,,.TP,,.,.,,.PO3-4,.,0.3m,,,pH,,,.4 结 论(1)(N、P);(2)CODTP,;(3),;5℃,TN,TN. References[1] BROUWERE,BOBBINKR.Restorationofaquaticmacrophyteregetationinacidifiedandentrophiedsoftwaterlakesanoverview[J].AquaticBotany,2002,73:405-431.[2] LIXF,JIANGCC.ConstructedwetlandsystemsforwaterpollutioncontrolinNorthChina[J].Wat.Sci.Tech.,1995,32(3):349-356.[3] ,,,.[J].,2001,22(4):95-97.JIGuo-dong,SUNTie-heng,CHANGShi-jun,etal.SuperHeavyOilProducedWaterTreatmentbySurfaceFlowConstructedWetland[J].EnvironmentalScience,2001,22(4):95-97.[4] .[J].,2000,19(1):9-14WANGQing-an.ExperimentalStudyonSurfaceTreatmentbyConstructedWetlands[J].SichuanEnvironment,2000,19(1):9-14.[5] ,, ,.[J].:,2006,38(6):786-789.DAIDong-chao,HUANGTing-lin,WANGZhen,etal.Astudyonlandscapewaterpurificationbyintegratedbio-logicaltechnique[J].J.Xi'anUniv.ofArch.&Tech.(NaturalScienceEdition),2006,38(6):786-789.[6] MartinRegelsberger,BarbaraRegelsberger.Subsurfaceverticalreedbedsincoldclimate[C]//10thInternationalConferenceonWetlandSystemsforWaterPollutionControl.CalousteGulbenkianFoundation,Lisbon,Portugal,2006:869-876.[7] HileyP.Performanceofwastewatertreatmentandnutrientremovalwetlands(reedbeds)incoldtemperaturecli-mates[C]//ManderU.andJenssenP.Constructedwetlandsforwastewatertreatmentincoldclimates.WITPress,2003.[8] SikoraFJ,ZHUT,BehrendsLL.Ammoniaremovalinconstructedwetlandswithrecirculatingsubsurfaceflow:removalratesandmechanisms[J].Wat.Sci.Tech.,1995,32(3):193-202.(下转第148页)1251 :OptimizationofdistrictcoolingpipenetworklayoutwithsingleparentgeneticalgorithmFENGXiao-ping1,2,DENGBo2,LONGWei-ding2(1.SchoolofEnvironmentalandCivilEngineering,JiangnanUniversity,Wuxi214122,China;2.Sino-GermanSchoolofAppliedSciences,TongjiUniversity,Shanghai200092,China)Abstract:Optimizationofdistrictcoolingpipenetworklayoutisatypicalcombinationoptimalproblem.Themathematicalmodelwithconstrainedconditionsisbuiltwiththeminimalannualcostofpipenetworkastheoptimallayoutobjectivefunctionbythecharacteristicsofthedistrictcoolingpipenetwork.Basedonthegraphictheoryandgeneticalgorithm,animprovedgeneticalgorithm,namelysingleparentgeneticalgorithm(SPGA),isintroducedtooptimizeadistrictcoolingtreepipenetworklayout,andthecodetechnology,transpositionoperators,aswellasthefitnessfunctionaredesigned.ApracticalapplicationdemonstratedthatSPGAusestheminimalannualcostofpipenetworkastheoptimallayoutobjec-tive,asetofdistrictcoolingpipenetworklayoutwiththeminimalannualcostcanbeacquired.IncomparisonwiththeDi-jkstraalgorithm,theSPGAcansaveinvestmentandrunning-costwhichpossessesth