29320163ResearchofEnvironmentalSciencesVol.29No.3Mar.2016.J.2016293434-441.CUIXiaominWANGYipingLIANGJidong.CombineddegradationofligninbyelectrochemicaloxidationandbiodegradationECO-BDJ.ResearchofEnvironmentalSciences2016293434-441.2015-07-222015-11-092015JQ20522014514092091988-flirice@163.com.*1977-jidongl@mail.xjtu.edu.cn*710049ECO-BDelectrochemicaloxidationandbiodegradationTiSn-SbO2Na2SO4ECO-BD8.64mAcm220.00kCcNa2SO40.15molL.ECO-BD1gLCODCr59.31%28.87kW·hkg.-ECO-BDECOCO2H2O0.20~0.250.31~0.37.ECOBDECO-BD.X703.51001-6929201603-0434-08ADOI10.13198j.issn.1001-6929.2016.03.16CombinedDegradationofLigninbyElectrochemicalOxidationandBiodegradationECO-BDCUIXiaominWANGYipingLIANGJidong*DepartmentofEnvironmentalEngineeringXi'anJiaotongUniversityXi'an710049ChinaAbstractLigninisacomplexthree-dimensionalaromaticpolymerwhichcontributestoasignificantvalueofCODchromaticityandPOPSinwastewaterofthepulpandpaper-makingindustry.InordertodevelopaneconomicallyeffectiveandenvironmentallyfriendlytechnologyforlignindegradationsynergeticlignindegradationcombiningelectrochemicaloxidationECOwithbiodegradationBDwasproposed.FirstlytheelectrochemicalpretreatmentofligninsolutionwasstudiedbygalvanostaticelectrolysisusingTiSb-SnO2astheanodeandsodiumsulphateastheelectrolyte.ResponseSurfaceMethodologyRSMwasemployedtooptimizetheECO-BDprocessoflignindegradation.Currentintensityof8.64mAcm2electricquantityof20.00kCandconcentrationofNa2SO4of0.15molLweretakenastheoptimumconditions.UndertheoptimumconditionsaCODCrremovalrateof59.31%andspecificenergyconsumptionSECof28.87kW·hkgwereobtainedfor1gLligninsolution.SecondlyFTIRandGC-MSanalysisshowedthatECOcaneffectivelydegradethestructuresofphenolichydroxylandchromophoricgroupsoflignin.Electro-oxidativeconversionofligninwasinitiatedwiththebreakingofligninpolymeronaccountofetherlinkagefloutingintomonomersandwasfollowedbytheiroxidationtoquinones.FinallyquinonesunderwentopeningofthearomaticringstoproducedicarboxylicacidsorwerefurthermineralizedtoCO2andH2O.AfterECOthebiodegradabilityofligninincreasedfrom0.20-0.25to0.31-0.37.Thereforethefollowingbio-degradationtimewassignificantlydecreased.InconclusionECOcandestroytherecalcitrantbondingstructureoflignintoproducebiodegradableintermediates.ECO-BDcouldbeaneconomicallyeffectiveandenvironmentallyfriendlymethodforlignindegradation.KeywordselectrochemicaloxidationbiodegradationligninresponsesurfacemethodologyRSMCOD1.32.、、、3-5...6.ECOelectrochemicaloxidation7.ECO21.Pelegrini8DSAdimensionallystableanode.DSA〔IrO2、PbO29-10、TiTa2O5-IrO2、TiRuO2-IrO2、TiSb-SnO2、TiPbO211-12、TiO2TiTiO2NTPbO213〕.β-O-414.ECO.ECO15.Ahmed716ECO.TiSb-SnO2TiPbO2BI〔ρBOD5ρCODCr〕0.19~0.260.29~0.350.36~0.4212.ECO-BDECOBD.11.1..5Lρ200mgL800mgL.20d40%.100mLρlgL30℃、100rmin3d5mL100mL3.500rmin30min2OD600600nm2.ρ5.0gLρ10.0gLρNaCl5.0gLpH=7.0.ρKH2PO41.0gLρK2HPO41.0gLρNH4Cl0.2gLρMgSO4·7H2O0.2gLρCaCl20.015gLφ1.0mLL.ρFeSO4·7H2O2mgLρCuSO4·5H2O0.4mgLρMnSO4·H2O4mgLρCoCl2·6H2O1mgLρNiCl2·6H2O2mgLρB10.1mgLpH=7.0.1.21.2.1ECO-BDECO1、.31.5cm5cm.TiSb-SnO247.1cm2.200rmin25±1℃Na2SO4ρ1gL.BD500mL200mLpH7.0±0.2、.5%100rmin、30℃48hρDO2mgL3.534291ECOFig.1BatchreactorofelectrolyticsystemECOBD、ρCODCr、UV、、、.1.2.2ECO-BDX1、X2cNa2SO4X3ECO-BDCODCrY1SECspecificenergyconsumptionY2.1.1Table1Factorsandtheirlevelsofresponsesurfacetest-101X1mAcm22.506.2510.00X2kC101520X3cNa2SO4molL0.050.100.151.31.3.1400rmin30min0.22μm.ρCODCr.ρCODCrGB11914—1989《》ρBODWTWBODOxiTopIS6CPPA17.-Agilent8453UV-VisspectrophotometerAgilent.200~208268~287nm218.280nm.10280nm.BrukerTensor37FT-IRBruker、.105℃1mg150mgKBr4cm-1400~4000cm-132.NicoletOmnicV8.0.GC-MS-Agilent68905973GC-MSAgilent.100mLpH2.0~3.00.22μm1mLGC-MS.HP-530.0m×320μm×0.50μm230℃250℃60℃5min10℃min280℃5min.He1mLmin1.0μL50∶1.EI70eV150℃.NIST2002.1.3.2、ρCODCrSEC.BDECO.ECOWECO=U×I×Δt1WECOECOkW·hUVIAΔth.1kgCODCr1.05kW·h.BDWBD=ΔCODBD×V×1.0510002WBDBDkW·hΔCODBDρCODCrmgLVL.SEC=WECO+WBD×1000ΔCODECO+ΔCODBD×V3ΔCODECOECOρCODCrmgL.22.1ECO-BD63432.1.1Design-Expert8.0.6295%〔45〕.2BBDTable2ExperimentalmatrixandresultsofBox-BehnkenDesignforlignindegradationX1mAcm2X2kCX3molLY1%Y2kW·hkg16.25150.1050.1729.18210.00200.1056.5422.5732.50150.1556.0022.58410.00150.0548.8136.4552.50200.1055.5931.53610.00150.1549.0931.2176.25150.1049.4831.1286.25150.1051.2127.1392.50150.0558.9022.79106.25150.1051.2128.38116.25100.0545.6123.28126.25200.0560.3535.24136.25200.1563.7022.14146.25150.1052.5027.94152.50100.1050.4717.47166.25100.1542.3921.521710.00100.1038.7329.79Y1=50.91-4.25X1+9.01X2-0.31X3+3.17X1X2+0.79X1X3+1.64X2X3-0.20X12-0.38X22+2.48X32-3.28X12X2+1.55X1X224Y2=28.75+5.57X1+2.43X2-3.72X3-5.32X1X2-1.26X1X3-2.84X2X3-0.35X12-3.06X22-0.14X32+2.35X12X3-4.74X1X225RSManalysisofvarianceANOVA19.453.P0.05.lackoffitP0.05.adequateprecision420Y1Y222.62514.356.Joglekar21R20.8.Y1Y2R20.99030.9699AdjR20.96900.9037R2AdjR20.219.Y1Y22.3CODCrY1SECY2Table3ANOVAresultsforthecubicmodelofCODCrremovalrateY1andSECY2oflignindegradationFP638.311158.0346.45<0.000146.2551.250.9510.950.710.44595.3041.33429.631139.061