2[1]。EBPR、。EBPRPAOVFA[2]。PAO。。WANG[3]CHEN/[4]JIN[5]。PAO。EBPR。VFA、[6]。。PAOPHBPAOPHV。。20Mt[7]。。。。。11.16.0L400mm、150mm。120r/min121.2131472.350116--。A/O-91.5%96.5%。-A/OPHA22.3mg/g-PHA6.8mg/g。-PPKA/O。X703.1A1000-3770(2018)06-0038-0042017-12-132016JH031967-、18915066672@163.com44620186Vol.44No.6Jun.,2018DOI:10.16796/j.cnki.1000-3770.2018.06.00838ρ(SOP)/(mg·L-1)ρ(TN)/(mg·L-1)w(TP)①/(mg·g-1)ρ(MLVSS)/(g·L-1)ρ(MLSS)/(g·L-1)SOP/%1Tab.1ComparisonoftworeactorperformanceCOD/(mg·L-1)0.680.287.26.842483.4583.5212.1652.26591.596.55146R1R2①VSS。25℃。2R1R246h。R1120min→180min→30min→30minR2150min→30min→180min。1.2PAO。。、。。[3]1.0L1.0mL。1.3385%FISHPAO30%。1.290d60d。1.4MLSS、MLVSS、SOPCOD[8]。PHATN。PHA1mL850μL150μL100℃1h1mLGC。PPXPPK[9]。22.1COD。1。1COD50mg/LCOD。TN。。TP。2.2SOPEBPRPAOVFAPHAPAOPHA。GAOGAOPAOVFA。GAOPAOGAOSOPSOPGAOSOP。。1SOPCOD。1SOPR1SOP61.2mg/LR210.6mg/L。[10]。SOP0.680.28mg/L1。CODR1CODR2CODPHA。1SOPCODFig.1ChangesinSOPcontentandCODduringtypicalcyclesρ(SOP)ρ(SOP)/(mg·L-1)0501001502002503003504000102030405060700100200300400500COD/(mg L ) t/min392.3。。2。2R2R2R1。R2R20.5mg/L。。R2R1R2。2.4。PAO。PAOPHBPAOPHV。PAO。。3PHA。3R1PHA12.3mg/g22.3mg/gPHA81.3%。52.6mg/g41.2mg/g。PHA。PHA22.3mg/g10.2mg/g41.2mg/g52.4mg/g。R2PHAPHA5.3mg/g6.8mg/gPHA28.3%PHAA/OPHAA/O。PHAR2PHA6.8mg/g5.3mg/g。R2R1。MINOGAO[11]。R2。2.5。PPXPPK。2。2R2PPXR1R2R1PPXPPXR2PPKR1。R2R1。R2。3A/O2Fig.2Effectofstarchonpolyphosphatestaininginreactors3Fig.3Variationofthepolymercontentinthetypicalcycleofthereactors0601201802403003600102030405060 w/(mg g )t/hPPXPPKR1R20.100.060.350.392Tab.2Comparisonofkeyenzymeactivitiesinreactors/(mmol·g-1)44640MechanismStudyofRuO2/ZrO2-CeO2CatalyticWetOxidationforAceticAcidDegradationZHOUHao,GUOJiaojiao,HUJiahui,WANGJianbing,HEXuwen(SchoolofChemical&EnvironmentalEngineering,ChinaUniversityofMining&Technology(Beijing),Beijing100083,China)Abstract:DifferentimmobilizedRucatalystswerepreparedbyusingdifferentmethods.Thecatalystsurfaceadsorbedoxygencontent,thedispersityandthegrainsizeofRuwerecharacterized.Theactivitiesofdifferentcatalystsforthedegradationofaceticacidbywetoxidationweretested.Theresultsshowedthat,theactivityofdifferentcatalystswereconsistentwiththerankofadsorbedoxygencontentonthesurface.Whenreactiontemperaturewas140℃andpressurewas3MPa,aceticacidwasdegradedbyRu/ZrO2-CeO2catalystoxidation,theremovalrateofCOD(about5g/L)inaceticacidsolutionreached99%after120minreaction.ThedispersityofRupreparedbyheatingrefluxmethodincreased33%,andtheCODremovalrateincreased54%after120min,comparedwiththecaseoftraditionalprecipitationmethod.Theexcitationmechanismoffreeradicalsmightbeasfollows,transferstheelectronstotheadsorbedoxygenoncatalystsurfacethrough-O2--Ce4+-O2--Ru4+-bonds.Finally,itcombinedtheH+inthewatertoformfreeradicalHO2·,thuscompletingtheinitiationoffreeradicals.Keywords:catalyticwetoxidation;RuO2/ZrO2-CeO2;aceticacid;hydroxylradicalFeasibilityandMechanismofBiologicalPhosphorusRemovalUsingStarchasaCarbonSourceWANGWei1,HUYing2(1.JiangSuUrbanandRuralConstructionCollege,Changzhou213147,China;2.CollegeofCivilEngineering,FuzhouUniversity,Fuzhou350116,China)Abstract:Thefeasibilityofbiologicalphosphorusremovalwithcarbonsourceinanaerobic/oxoc(A/O)andoxic/entendedidleprocesswasresearchedbycomparingbiologicalphosphorusremovalefficiency,unitcyclechangeofnutrientsandintracellularpolymer,andthekeyenzymeactivitiesusingsyntheticwastewaterasaresearchobject.TheresultsshowedthatstarchcouldbeusedascarbonsourceforBPR,theefficienciesofBPRinA/Oandoxic/extendedidleprocesswere91.5%and96.5%,respectively.Morepolyphosphatewasenrichedinoxic/extendedidleprocess.InA/Oregime,themaximummassfractionofsyntheticpolyhydroxyalkanoate(PHA)was22.3mg/g,and6.8mg/gfortheoxic/extendedidleprocess.Inaddition,theactivityofPolyphosphatekinase(PPK)inaerobic/extendedidleprocesseswashigherthanthatofA/O.Keywords:starch;biologicalphosphorusremoval;carbonsource;polyphosphate91.5%96.5%。A/OA/OPHA22.3mg/g-PHA6.8mg/g。[1],,.Zn2+[J].,2017,43(2):22-28.[2]ZHAOJ,WANGD,LIX,etal.Anefficientprocessforwastewatertreatmenttomitigatefreenitrousacidgenerationanditsinhibitiononbiologicalphosphorusremoval[J].ScientificReports,2015(5):8602.[3]WANGD,LIX,YANGQ,etal.Biologicalphosphorusremovalinsequencingbatchreactorwithsingle-stageoxicprocess[J].BioresourceTechnology,2008,99(13):5466-5473.[4]CHENH,WANGD,LIX,etal.Biologicalphosphorusremovalfromrealwastewaterinasequencingbatchreactoroperatedasaerobic/extended-idleregime[J].BiochemicalEngineeringJournal,2013,77:147-153.[5]JINY,DINGD,FENGC,etal.Performanceofsequencingbatchbiofilmreactorswithdifferentcontrolsystemsintreatingsyntheticmunicipalwastewater[J].BioresourceTechnology,2012,104:12-18.[6]PEREIRAH,LEMOSPC,REISMAM,etal.Modelforcarbonmetabolisminbiologicalphosphorusremovalprocessesbasedoninvivo13C-NMRlabellingexperiments[J].WaterResearch,1996,30(9):2128-2138.[7]BOSSINKBAG,BROUWERSHJH.Constructionwaste:quantifi-cationandsourceevaluation[J].JournalofConstructionEngineeringandManagement,1996,122(1):55-60.[8]《》.[M