205No.5Vol.20200610JournalofChemicalEngineeringofChineseUniversitiesOct.20061003-9015(2006)05-0837-061,2,2,2(1.200235;2.,200051)10~13min100CODTQ028.8TQ028.53X703.1AStudyontheFormationMechanismandWastewaterTreatmentPerformanceofDynamicMembraneLIJun1,LIFang2,ZHUOLin-yun2,XIDan-li2(1.DepartmentofChemicalEngineering,ShanghaiInstituteofTechnology,Shanghai200235,China;2.InstituteofEnvironmentalScienceandEngineering,DonghuaUniversity,Shanghai200051,China)Abstract:Theformationofkaolindynamicmembrane(DM)onaceramicmembranetubeviacrossflowfiltrationandtheperformanceofthepreparedDMusedinwastewatertreatmentwerestudied.Theeffectsoftransmembranepressure,concentrationofkaolinsuspension,crossflowrateandmembraneformingtimeonDMformationwereinvestigated.Throughtheanalysisofexperimentdata,theformationprocessofDMcouldbefittedtothestandardfiltrationmodelduringthebeginning10~13minoftheDMformation,duringwhich,poreblockageisthemainfactorcausingthefluxdecreasesrapidly.ThentheDMformationprocessturnstofittocakefiltrationmodel,duringwhich,particlesdepositontheinnerwallofceramictube,andpenetratingfluxdecreasesslowlyuntilitreachessteadystate.TheDMpreparedcouldbeusedtotreatthesecondaryeffluentoftheurbansewagedisposalplant.Theremovalrateofturbiditycanbeupto100%andinthemeanwhile,theDMpreparedalsohascertaineffectonCODremoval.Keywords:crossflowfiltration;kaolin;dynamicmembrane;standardfiltrationmodel;cakefiltrationmodel1(DynamicMembraneDM)[1][2][3]2004-12-132005-07-14(p1501)(1964-)E-maillij82@tom.com838200610[4~7][7~10][11,12]22.1-Al2O39cm13cm40cm361~3µm0.13µm(2µm)0.04µm19µmCOD120~150mg⋅L−1SS0.100~0.200g⋅L−150~100NTUpH7~82.220L2.315s10min()COD()COD33.13.1.1110min1001020304050601000200030004000500060007000u=0.5m·s-1c=0.3g·L-10.1MPa0.2MPa0.3MPa0.4MPaf/L.m-2h-1t/minFig.1Penetrantfluxwithrespecttotimeatdifferenttransmembranepressuref/L⋅m−2⋅h−1m⋅s−1g⋅L−120583901020304050600246810t/min0.1g·L-10.3g·L-10.5g·L-10.7g·L-1p=0.2MPau=0.5m·s-1f/L⋅m−2⋅h−13Fig.3Kaolinweightloadedonceramictubewithrespecttotimeatvariouskaolinconcentrations010203040506010002000300040005000p=0.2MPau=0.5m·s-1t/min0.1g¡L-10.3g¡L-10.5g¡L-10.7g¡L-1W/mg⋅cm−22Fig.2Penetrantfluxwithrespecttotimeatdifferentofkaolinconcentration∆p=0.2MPau=0.5m⋅s−1∆p=0.2MPau=0.5m⋅s−10.1g⋅L−10.3g⋅L−10.5g⋅L−10.7g⋅L−10.1g⋅L−10.3g⋅L−10.5g⋅L−10.7g⋅L−1min110~15min3.1.20.1g⋅L−10.7g⋅L−1210~15min0.1g⋅L−1~0.7g⋅L−110~15min310min240.2MPa0.5m⋅s−10.3g⋅L−110min(7)3.1.30.2MPa0.3g⋅L−10.511.52m⋅s−11.01.52.0m⋅s−10.5m⋅s−1(1~2m⋅s−1)30min11.52m⋅s−10.5m⋅s−10.5m⋅s−13.25(a)5(b)60min(4Fig.4SEMphotographoftheDMsurface84020061002468101214160.81.21.62.02.42.8t/min0.1MPa0.2MPa0.3MPa0.4MPa6(a)t/vtFig.6(a)Relationshipbetweent/vandtatdifferenttransmembranepressuret/v/min⋅L−14812162024281.21.62.02.42.83.23.64.0v/L0.1MPa0.2MPa0.3MPa0.4MPat/v/min⋅L−16(b)t/vvFig.6(b)Relationshipbetweent/vandvatdifferenttransmembranepressure0246810121.01.52.02.5t/min0.1g·L-10.3g·L-10.5g·L-10.7g·L-1t/v/min⋅L−15(a)t/vtFig.5(a)Relationshipbetweent/vandtimetatdifferentkaolinconcentrations481216202.02.42.83.23.6v/L0.1g·L-10.3g·L-10.5g·L-10.7g·L-1t/v/min⋅L−15(b)t/vvFig.5(b)Relationshipbetweent/vandvatdifferentkaolinconcentrations0.1g⋅L−10.3g⋅L−10.5g⋅L−10.7g⋅L−10.1g⋅L−10.3g⋅L−10.5g⋅L−10.7g⋅L−12)10mintt/vv0~t5(a)R20.988t/v=a1t+b1a1b1a10.072~0.094b10.91~1.230.3g⋅L−1a1b110~13minvt/v5(b)R20.985t/v=a2v+b2a2b2a20.068~0.13b21.44~1.840.3g⋅L−1a2b2tt/vvt/v[13]10min10~13min6(a)6(b)60min(1)10min10~13min3.30.10.30.50.7g⋅L−10.2MPa0.5m⋅s−110min1m⋅s−10.2MPa71f0.3~0.7g⋅L−10.1g⋅L−1205841(5(a)~6(b))30mintt/v35minvt/v30min10.3g⋅L−10.2MPa,0.5m⋅s−110minCODCOD39.4~51.315minCODDM240minDMDM40.107~0.408MPa0.1~0.7g⋅L−10.5m⋅s−110~13min10~13min30min35min100CODc⎯g⋅L−1u⎯m⋅s−1f⎯L⋅m−2⋅h−1v⎯L∆p⎯MPaW⎯g⋅cm−2t⎯min[1]KnyazkovaTV,KavitskayaAA.Improvedperformanceofreverseosmosiswithdynamiclayersontomembranesinseparationofconcentratedsaltsolutions[J].Desalination,2000,131:129-136.[2]PasternakM,KokturkUygur.Novelmembraneandmethodofseparation[P].USP:5141649.1992-08-25;Membraneandmethodofseparation[P],USP:5171449,1992-12-15.1Table1PenetrantcharacteristicswhenwastewaterwastreatedwithdynamicmembraneTreatingtime/min0153060120180COD/mg⋅L−1149.78*80.7684.7490.7372.7772.77Turbidity/NTU45.31*0.690000*denotestheindexofthewastewaterenteringthemembranemodule050100150200250100200300400t/minf/L⋅m−2⋅h−17Fig.7Penetrantfluxwithtimeforsecondaryeffluentfiltration0.1g⋅L−10.3g⋅L−10.5g⋅L−10.7g⋅L−1842200610[3]ElyashevichGK,RosovaEYu,KuryndinIS.Propertiesofmulti-layercompositemembranesonthebaseofpolyethyleneporousfilms[J].Desalination,2002,144:2l-26.[4]BangxiaoCai,HailinYe,LiYu.PreparationandseparationperformanceofadynamicallyformedMnO2membrane[J].Desalination,2000,128:247-256.[5]GaljaardG,BuijsP,BeerendonkE,etal.Pre-coating(EPCE®)UFmembranesfordirecttreatmentofsurfacewater[J].Desalination,2001,139:305-316.[6]WangJuh-yaun,LiuMing-chyi,LeeChau-jen,etal.Formationofdextran-Zrdynamicmembraneandstudyonconcentrationofproteinhemoglobinsolution[J].JournalofMembraneScience,1999,162:45-55[7]MegatJohariMegatMohdNoor,FakhrulRaziAhmadun,ThamerAh