*张 涛 宋新山**(东华大学环境科学与工程学院,上海201620) 通过脉冲示踪实验比较了3种多点进水方式和一般推流式的水力效率,通过脱氮实验获得不同水力效率下总氮和铵态氮浓度的空间分布,并对水力效率和脱氮效率进行了相关性分析。结果表明:4种布水方式中,阶梯进水方式的有效体积比和水力效率均最高,此时潜流湿地系统内部水流停留时间分散程度较低,水流混合流动程度较弱,更接近于推流;不同布水方式下总氮在潜流湿地中的空间分布差异比铵态氮明显,阶梯进水方式有利于湿地后段的反硝化脱氮作用;水力效率与总氮去除率存在极显著的相关性,而与铵态氮的去除相关性不显著。 潜流人工湿地;多点进水;示踪实验;水力效率;脱氮 X703 A 1000-4890(2010)11-2210-06Hydraulicefficiencyandspatialvariationofnitrogenconcentrationinsubsurfaceflowcon-structedwetlandswithdifferentmulti-inflows.ZHANGTao,SONGXin-shan(CollegeofEnvironmentalScienceandEngineering,DonghuaUniversity,Shanghai201620,China).ChineseJournalofEcology,2010,29(11):2210-2215.Abstract:Throughtracertests,thehydraulicefficiencyoffourkindssubsurfaceflowconstructedwetlandswithdifferentinflowconfigurations(i.e.,commonhorizontalflowand3kindsofmulti-inflow)wasexamined,withthespatialvariationoftotalnitrogen(TN)andammoniumnitrogen(NH+4-N)inthewetlandsandthecorrelationbetweenthehydraulicefficiencyandthenitrogenremovalefficiencystudied.Amongthefourinflowconfigurations,step-inflowhadthehighesthy-draulicefficiency,becauseithadalongmeanresidenttimeandlowresidencetimedistribution(RTD),revealingthattheflowpatternwasmuchclosertoaplugflowwithweakerverticalmix-ture.Underthefourinflowconfigurations,theTNandNH+4-Nshowedstratifieddistribution,andTNvariedobviouslyasaresultofdifferentinflowconfigurations.Thestep-inflowwasinfavorofthedenitrificationinthebackendofthewetlandbed.Thereweresignificantrelationshipsbe-tweenhydraulicefficiencyandTNremovalefficiency,whilehydraulicefficiencydidnotaffecttheremovalofNH+4-Nsignificantly.Keywords:subsurfaceflowconstructedwetland;multi-inflow;tracertest;hydraulicefficiency;denitrification.*(10ZR1400300)、(2008ZX07207-006-04)、(50721006)(2006CB403402-3)。**E-mail:newmountain@dhu.edu.cn:2010-05-27 :2010-08-03 ,、、(,2009)。、、,(SSFCWs)。、、、(,2003;Giraldietal.,2009),(WernerKadlec,2000;,2007)。,,、pH、,(,1991;MayoMutamba,2004;,2005),。ChineseJournalofEcology 2010,29(11):2210-2215 DOI:10.13292/j.1000-4890.2010.0329,,(Thack-stonetal.,1987)、(Perssonetal.,1999)。,,(,2007),,。,,,,。,,,,。1 1.1 4(1)。A,,;B、C、DPVC,。B3;C+1/4+3/8+1/24;D+1/2。200cm×50cm×70cm,220cm;4,10cm(10~20mm)、15cm(5~8mm)、20cm(2~4mm)、15cm。、、12(2)。20099,20~25·m-2。200911—20105。,55cm。1.2 1.2.1 ,4.85.9m3·m-2·d-1。,200mlNaCl(100g·L-1),,。1.2.2 ,,(CODCr)、、。COD250~400mg·L-1,TN30~45mg·L-1,NH+4-N16~25mg·L-1。,0.72m3·m-2·d-1,1。:TN-、NH+4-N,《》(4)。1.3 1.3.1 ,。(1)(Giraldietal.,2009):1 Fig.1 Schematiclayoutofdifferentinflowconfigurationsinconstructedwetlands2211 :2 Fig.2 Samplingspotsdistributionofwetlands N(t)=(E(t)-Ew)MNaClQ(λNa+λCl)M(1):E(t)(s·m-1);Ew(s·m-1);MNaClNaCl(58.44g·mol-1);t(h);λNaNa+(5.01×10-3s·m-2·mol-1);λClCl-(7.63×10-3s·m-2·mol-1);Q(m3·h-1);M(g);N(t)(h-1)。1.3.2 Thackston(1987),e,:e=Veff/Vtotal=TmQ/(TnQ)=Tm/Tn(2):Veff(m3),;Vtotal(m3),。Tm(Hollandetal.,2004),:Tm=∫∞0tN(t)dt/∫∞0N(t)dt;Tn(Hollandetal.,2004),。1.3.3 λ(e)(σ2θ)(Perssonetal.,1999)。(Tp)(Tn),(3)。λ=Tp/Tn=e(1-σ2θ)(3),σ2,,:σ2=∫∞0(t-Tm)2N(t)dt/∫∞0N(t)dtσ2θ(Hollandetal.,2004),σ2θ=σ2/T2n。1.4 EXCEL,MAT-LAB(7.0)griddata()contour(),SPSS(17.0)。2 2.1 (1),,,,1。1,2,C(),,,,C,。e,,e1,,。1 Tab.1 EffectofinflowconfigurationonthehydraulicefficiencyofSSFCWs(m3·m-2·d-1)(h)(h)A()4.8409.91674.23818.33860.08480.42740.39115.9388.08333.35507.05340.10790.41510.3703B()4.8079.98564.35098.12370.08150.43570.40025.9768.03173.69967.94160.12310.46060.4039C()4.8019.99724.55146.96930.06970.45530.42355.9778.03113.97124.77410.07400.49450.4579D(+1/2)4.8539.89003.93648.11150.08290.39800.36505.9778.03112.91368.30960.12880.36280.31612212 29 11 (3)CBAD。C,;A,、“”,2,;BA“”,;D,,,,,。σ2θ=1,σ2θ=0(,2008),,,,。C,,。(,2001),,,,,(,1999;JenkinsGreenway,2005),,,;,。2.2 ,,,。,,,。4、5。MATLAB,gridda-ta()contour()。4,(TN)(NH+4-N)34。3、4,4,TNNH+4-N,。TN,NH+4-NNO-3-N,TN;,NH+4-N,NO-3-N,TN;,NO-3-N,3 TNFig.3 SpatialvariationsoftotalnitrogeninSSFCWwithdifferentinflowconfigurationsTN。,。ATN,,,NH+4-N,4ANH+4-N。B,;C2213 :4 NH+4-NFig.4 DistributionofammonianitrogeninSSFCWwithdifferentinflowconfigurations,;D,;。,C、D,,COD45%~55%,,TN,D。,CTN,10mg·L-1,75%,,。,、,(,2006)。,,,NH+4-N(,2007)。NH+4-N(4),NH+4-N,60%~65%,NH+4-N,NO-3。,。TN(3A),,,。,,,,,,。 ,。A,TN,;B,TN;C,,;D,TN,,,,,,。NH+4-N,。A、BNH+4-N,C、D,NH+4-N。TNNH+4-N,;,,,、(,2007),。TNNH+4-N,,,,、()2214 29 11 2 Tab.2 CorrelationbetweenhydraulicefficiencyandremovalefficiencyofnitrogenλTNNH+4-Nλ1TN0.548**1NH+4-N0.0950.554**1*P0.05,**P0.01;n=52。(1)。CTN,,1,TN。2.3 ()2(,2008),。2,TN(P0.01),NH+4-N,。2,NH+4-NTN,TN。NH+4-N,NH+4-N,,NH+4-N。,TN,。,TNNH+4-N(r=0.554,P0.01),NH+4-N。3 4,(TN)(NH+4-N),。,,,,。,。(P0.01),。2,,,。,,,,COD/TN,,,。.2008.().:.,,.2001..,21(6):720-725..1991..,4(5):8-12. ,, ,.2007..,28(9):1965-1969. .2005.().:., .2007..,37(10):1166-1171..1999..:., , .2003..(),33(3):161-164. ,,,.2007..,9(10):88-90., , .2006..,26(11):1821-1827. .2009..,35(7):1-3.GiraldiD,VitturiMM,ZaramellaM,etal.2009.Hydrody-namicsofverticalsubsurfaceflowconstructedwetlands:TracertestswithrhodamineWTandnumericalmodeling.EcologicalEngineering,35:265-273.HollandJF,MartinJF,GranataT,eta