113Vol.11No.320173ChineseJournalofEnvironmentalEngineeringMar.20172015CB9320032015-11-172016-01-081989—。E-mailwenkai1286@163.com*E-mailcyjing@rcees.ac.cn123123*1.7100552.1000853.100049。TiO2。3TiO22.5g·L-1<0.5mg·L-1。EBCTEBCT=20minTiO2。TiO2H2SO4NaOH。XTiO2。Xμ-XRF。KXμ-XANES。。pH。TiO2。TiO2X703.1A1673-9108201703-1322-07DOI10.12030/j.cjee.201511128Arseniteadsorptionremovalfromacidwastewaterusingtitaniumdioxidead-sorptionfiltercolumnWANGWenkai1YANLi23DUANJinming1JINGChuanyong23*1.SchoolofEnvironmentalandMunicipalEngineeringXi'anUniversityofArchitectureandTechnologyXi'an710055China2.ResearchCenterforEco-EnvironmentalSciencesChineseAcademyofSciencesBeijing100085China3.UniversityofChineseAcademyofSciencesBeijing100049ChinaAbstractRemediationofmetallurgicalindustrywastewaterhaspresentedagreatenvironmentalchallengefordecades.InthisstudyaremediationtechniqueforAsⅢadsorptiveremovaladsorbentregenerationandAsⅢrecoverywasproposed.UsingthreegranularTiO2columnsinseriesAsIIIwithinitialconcentrationof2.5g·L-1couldbereducedtobelowthewastewaterdischargelimitof0.5mg·L-1.OptimizationoftheemptybedcontacttimeEBCTsuggestedthata20minEBCTwassufficientforAsⅢremoval.ThespentTiO2couldberegeneratedusingH2SO4andNaOH.TheX-raydiffractionpatternsofpristineandspentTiO2revealnochangeinthecrystallinestructurewhichensuresitshigheffectivenessafterregenerationandenablesitsreuse.Synchrotron-radiation-basedmicro-beamX-rayfluorescenceμ-XRFwasusedtoanalyzetheinsituelementalcompositionofthesolidresidueafterregenerationrevealingthecoexistenceofmanyheavymetals.ArsenicK-edgemicro-focusX-rayabsorptionnear-edgestructureμ-XANESanalysissuggestedtheexistenceofAsⅤinthesolidresidueindicatingthatstrongalkaliconditionsduringtheregenerationprocessmayfacilitatetheoxida-tionofAsⅢ.Thesmallamountsofsolidresidueproducedduringtheadsorbentregenerationprocessmaybeusedasarawmaterialfortheproductionofarseniccompounds.ThewastesolutioncanbefurthertreatedaftermixingwithrawwatertoadjustthepHtoneutral.Thisadsorptionregenerationandreuseprocessprovidesan3innovativetechniqueformetallurgicalindustrywastewaterremediationthatispromisingforpracticalapplications.KeywordsarsenitemetallurgicalwastewatergranularTiO2columnadsorbentregeneration1-3。。、、、4-6。HDSpH7。8-10。、。、、、11-12。TiO2。TiO2。“”。1、1.12590±295mg·L-1。TiO2TiOSO4PVA13。300gTiOSO42L4℃5mol·L-1NaOHpH7.5100μS·cm-1。PVA3.3%10∶190℃40~600.25~0.42mmTiO2。TiO21a、b5nm。BETTiO2196m2·g-11c。XRDTiO21d。1.22。TiO2。TiO2316cm1.2cm20gTiO2。0.45μm。31TiO2100mL。TiO2。2∶5pH。1.3EBCT10、2030min。AAS800PEICP-OES8000PE31。AASICP-OES0.7μg·L-14μg·L-1。HPLC-AFS0.6μg·L-11.7μg·L-1。3231111TiO2SEMa、TEMb、N2cXRDdFig.1SEMaTEMbN2adsorptionanddesorptioncurvecandXRDcharacterizationdofgranulesTiO22TiO2Fig.2SchematicflowchartforindustrialwastewatertreatmentprocessusingTiO2columnsTiO2100mL0.5mol·L-1H2SO42h5mol·L-1NaOH3TiO2。TiO20.5mol·L-1H2SO4TiO2。H2SO4NaOH70mL。TiO2。TiO2XXRD。Xμ-XRFKXμ-XANES。μ-XRFμ-XANESBL15U1X。XSi11112keVXK-B4μm×4μm0.6mm×0.1mm1s4μmSDDVortexX。μ-XRFIgorOriginPro8。μ-XANESK11867eV-150~300eV。Na2HAsO4·7H2ONaAsO2。IFEFFITμ-XANES。4231322.1EBCTEBCT3pH3。A、B、C3TiO2。。3EBCTaEBCT20minpHbFig.3EffluentAsⅢconcentrationsfromcolumnsinseriesasafunctionofbedvolumewithdifferentEBCTaandpHofeffluentinseriescolumnsasafunctionofbedvolumewhenEBCT=20minb1AEBCT102030minA115、131139mg·g-1TiO2。EBCT2030min10minEBCT2030minEBCT20minTiO2。20minEBCTTiO2EBCT14EBCT20min。10、2030minEBCT8.7、6.14.2μg·L-10.5mg·L-1。EBCT=20minpH6.6±0.56~9。2.24TiO2AsⅢFig.4AsⅢdesorptioncomparisonwithdifferentTiO2backwashingprocesses4。1、270mL0.5mol·L-1H2SO41~370mL5mol·L-1NaOH。OH-。375%90%TiO2。2.3。TiO2XRD5。TiO2TiO25231115TiO2XRDFig.5XRDpatternsofTiO2beforeandafteradsorptionandregenerationTiO290.6%TiO2TiO2。2.4μ-XRFKμ-XANESμ-XRFμ-XANES15。μ-XRF。μ-XRFKμ-XANES6。μ-XRF。μ-XANES25.2%74.8%。。。Eh=Eh0-0.059/npHH3AsO4aq+2H++2e-=H3AsO3aq+H2O116。6μ-XRFKμ-XANESFig.6SpatialdistributionofAsbyXRFmappingandAsK-edgeμ-XANESspectrasolidresidueXRF7。XRFTi、Ca、Fe、Zn、Ni、Pb、Cu、MnCr。。AsTiCa。X。AsAsTiCa。623137μ-XRFFig.7Spatialdistributionofheavymetalelementsinsolidresiduebyμ-XRFmappingwithdifferentfluorescenceintensityAsTi82R20.12012AsTiO2。μ-XRFAsCaR20.7626AsCaCa。8AsTiCaFig.8CorrelationcurvebetweenAsandTiCainμ-XRFmappingofsolidresidue2.5“”pH>13。2∶5pH。“”。7231113TiO21TiO22“”3TiO2。1LUOTingCUIJinliHUShanetal.ArsenicremovalandrecoveryfromcoppersmeltingwastewaterusingTiO2J.Envi-ronmentalScience&Technology201044239094-90982DUDKASADRIANODC.EnvironmentalimpactsofmetaloreminingandprocessingAreviewJ.JournalofEnvironmen-talQuality1997263590-6023NORDSTROMDK.WorldwideoccurrencesofarsenicingroundwaterJ.Science200229655762143-21454MCDONALDDMWEBBJATAYLORJ.ChemicalstabilityofacidrockdrainagetreatmentsludgeandimplicationsforsludgemanagementJ.EnvironmentalScience&Technology20064061984-19905WANGJWBEJANDBUNCENJ.RemovalofarsenicfromsyntheticacidminedrainagebyelectrochemicalpHadjustmentandcoprecipitationwithironhydroxideJ.EnvironmentalScience&Technology200337194500-45066BASHACASELVISJRAMASAMYEetal.RemovalofarsenicandsulphatefromthecoppersmeltingindustrialeffluentJ.ChemicalEngineeringJournal20081411/2/3