反渗透纳滤过程的物理化学研究溶质脱除率方程和膜渗透通量方程姬朝青

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

 57 3                  Vol.57 No.3 20063  Journal of Chemical Industry and Engineering (China)  March 2006、(Ⅰ)姬朝青,陈 浩(,313000):;;;:TQ028.8      :A:0438-1157(2006)03-0601-06PhysicalchemistrystudyonROandNFprocess(Ⅰ)EquationsofsoluterejectionandsolutionpermeationfluxonporousmembraneJIChaoqing,CHENHao(ZhejiangStoneEnvironmentEngineeringCo.Ltd,Huzhou313000,Zhejiang,China)Abstract:Theequationsofsoluterejectionandsolutionpermeationfluxofmulti-solutesolutiononporousmembranewerederivedonthebasisoftheadsorption-diffusionmodel.Thephysicalsignificanceofparametersintheequationswasdiscussed.Fromtheequationsofsoluterejectionandsolutionpermeationfluxonporousmembrane,thefollowingconclusionswerereached:whenthesolventwasadsorbedpreferentiallyonthemembranesurface,soluterejectioncoulddecreaseasthemembraneporosityincreased;whenthesolutewasadsorbedpreferentiallyonthemembranesurface,threecurvesofsoluterejectionvs.membraneporositywereobtained;soluterejectioncoulddecreaseasmembraneporousrateincreased;aminimumvaluewasshownonthecurveofsoluterejectionvs.membraneporousrate;aminvalueandamaxvaluewasshownonthecurveofsoluterejectionvs.membraneporosity.Thesolutionpermeationcoefficientdependedonthesolutediffusioncoefficientanddiffusionselectivityofsolutewithsolventinthemembranephase.Membranefoulingwascausedbythefactthatthesolutewasadsorbedpreferentiallyonthemembranesurface,leadingtoincreasedmembranesurfaceresistanceanddecreasedsolutionpermeationcoefficient.Keywords:reverseosmosis;nanofiltration;adsorption-diffusion;membranefouling  2005-01-10,2006-01-16.:(1963—),,.  -、、Sourirajan-[1-3].-,,.  Receiveddate:2005-01-10.Correspondingauthor:JIChaoqing.E-mail:Jichaoq-cn@sina.com ,-[4].,.-,,.1  1.1 、、,、、、.、,、,、,、.2、..,、,Langmuir.[4],nLiXfiL=KiXiL1-∑1-KiXiL(1)i.iFfi=-VidpLdL+RTXfi(L)dXfiLdL+ZiFdΧLdL(2)Ffw=-VwdpLdL-RT1-∑XfiLd∑Xfi(L)dL(3)iFsi=-VidpLdL+RTXi(L)dXiLdL+ZiFdΧLdL(4)Fsw=-VwdpLdL-RT1-∑XiLd∑XiLdL(5)[4]:,Jsv=usw=usiJfv=ufw=ufi.[4],iJfvi=-DimViRTdpLdL+1XfiLdXfiLdL+ZiFRTdΧLdL(6)Jfvw=-DwmVwRTdpLdL-11-∑XfiLd∑XfiLdL(7)Jsvi=-ViRTdpLdL+1XiLdXiLdL+ZiFRTdΧLdL(8)Jsvw=-VwRTdpLdL-11-∑XiLd∑XiLdL(9),i=1,…,n;Zii,,Zi,,Zi;i,Zi=0,i.L=0,Xi0=Xi2,      Xfi0=KiXi21-∑1-KiXi2,p0=p1L=δ,Xiδ=Xi3,     Xfiδ=KiXi31-∑1-KiXi3,pδ=p2i,Zi=Z+,j,Zj=-Z-,(6)i、jJfvi=-DimViRTdpLdL+1XfiLdXfiLdL+Z+FRTdΧLdL(10)Jfvj=-DjmVjRTdpLdL+1XfjLdXfjLdL-Z-FRTdΧLdL(11)(8)i、jJsvi=-DiViRTdpLdL+1ViLdXi(L)dL+Z+FRTdΧLdL(12)Jsvj=-DjVjRTdpLdL+1XjLdXjLdL-Z-FRTdΧLdL(13)(10)~(13)Nernst-Planck.(10)、(11)602           57 ijJfvij=-DijmVijRTdpLdL+dlnXfiLZ-Z++Z-XfjLZ+Z++Z-dL(14)(12)、(13)ijJsvij=-DijVijRTdpLdL+dlnXi(L)Z-Z++Z-XjLZ+Z++Z-dL(15) Dijm=(Z++Z-)DimDjmZ+Dim+Z-Djm;Dij=Z++Z-DiDjZ+Di+Z-Dj;Vij=ViZ-+VjZ+Z++Z-.i,Zi=0,(6)iJfvi=-DimViRTdpLdL+dlnXfiLdL(16)(8)iJsvi=-DiViRTdpLdL+dlnXiLdL(17)1.2   Jv=1-Jfv+Jsv(18)ijiXpij=XZ-Z++Z-fi3XZ+Z++Z-fj31-Jfv+XZ-Z++Z-i3XZ+Z++Z-j3JsvJv(19) Xpij=XZ-Z++Z-piXZ+Z++Z-pj.Xpi=Xfi31-Jfv+Xi3JsvJv(20)(14)~(17),Xfiδ=Xfi3=KiXi31-∑1-KiXi31-∑1-KiXi31-∑1-KiiXi2=exp-JsvδDij+JfvδDijm(21)1-∑1-KiXi31-∑1-KiiXi2=exp-JsvδDi+JfvδDim(22)(7)、(9),(7)、(9)、(21)、(22)(18)Jfvij=JvBij(23)Jfvi=JvBi(24)Jsvij=JvDijβijDijmBij(25)Jsvi=JvDiβiDimBi(26):βij=1-DijmDwm1-DijDw;βi=1-DimDwm1-DiDw;Bij=1+DijDijmβij-1;Bi=1+DiDimβi-1.(7)、(9),Xfiδ=Xfi3=KiXi31-∑1-KiXi3(21)、(22)、(18),Jv=AΔp-RTVwln1-∑Xfi31-∑Xi2-RTVwln1-∑1-KiXi2(27),A=VwDwmRTδ1+DwDwm-11-Dwβij-1DijmBijA=VwDwmRTδ1+DwDwm-11-Dwβi-1DimBi(23)、(25)(24)、(26)(14)、(15)(16)、(17),(19)(20)ijRij=1-Kij-Dijβij1-exp-Jvβij-1δDijmBij1-∑(1-Ki)Xi2DijmBij1-∑1-KiXi2Mijexp-JvδDijmBij+VijΔpRT(28) Kij=Kij+DijβijDijm-KijBij;Kij=KZ-Z++Z-iKZ+Z++Z-j.i603 3  :、(Ⅰ)Ri=1-Ki-Diβi1-exp-Jvβi-1δDimBi1-∑(1-Ki)Xi2DimBi1-∑1-KiXi2Miexp-JvδDimBi+ViΔpRT(29) Ki=Ki+DiβiDim-KiBi.AB,A+B-,Ka,α,ABX(1-α),(28)Ka=A+B-ABAB:XpAXpB=(1-RA+B-)2KaVw×X(1-α).(29)AB:XpAB=(1-RAB)(1-α)X.Ka=XpAXpBVwXpAB(1-RAB)=(1-RA+B-)2.XpA=XpB,ABRt=1-XpA+XpBX =RAB+α1-RAB-KaVw1-α1-RABX(30)(18)、(23)、(25)JvXiLZ-Z++Z-Xj(L)Z+Z++Z--XZ-Z++Z-i2XZ+Z++Z-j2Kij-Dijβij∑1-KiXi2DijmBij1-∑1-KiXi2=DijdXiLZ-Z++Z-Xj(L)Z+Z++Z-dL,ijMij=XZ-Z++Z-i2XZ+Z++Z-j2XZ-Z++Z-i1XZ+Z++Z-j1=expJvkij1+Kij-DijβijDijmBij∑1-KiXi21-∑1-KiXi2expJvkij-1(31)(18)、(24)、(26)Mi=expJvki1+Ki-Diβi∑(1-Ki)Xi2DimBi1-∑1-KiXi2expJvki-1(32)nijN..2  2.1 2.1.1 Kij()、Ki()和βij、βi的物理含义 (25)、(26):βij、βi、.(28)、(29):Kij()、Ki()、.Kij1Ki1,,Kij()1,Ki()1,Kij()、Ki().Ki1,,Ki()1,.2.1.2 多孔膜的分离机理 (28)、(29),、,、,、,.、.-、,,.、,、.Sourirajan[3]-.2.1.3 溶质脱除率随膜孔隙率的变化规律 ,,M=1,,(27)(29).(29)604           57 dRid=DiβiDimB2iKi1-Jvδ1-1-DimDiβi1-BiJvdJvdDimBi-1+JvδβiDiβiDim-11-BiJvDiβiDim-1dJvdDimBiexp-Jvβi-1δDimBiexp-JvδDimBi,Ki1,,(22)、(24)、(26)exp-Jvβi-1δDimBi1,:dRid0,.,Ki1,dRid=0,e2Ri20,;e2Ri20,;e1e2,e12Ri20,e22Ri20,.CA()[3].2.1.4 弱电解质的溶质脱除率和电离度的关系 (30),..(30)CA[5].2.2 2.2.1 对溶液体积通量方程的讨论 (27),A、,A.A0=VwDwmRTδ×1+DwDwm-1.2.2.2 膜污染机理的讨论 (27):,,Ki1,,,,RTVwln1-∑1-KiXi2,..(27)(29):①,,;②,,.(30)、(27):,pH,,,.3 (27)~(29):.(1),,.(2),、,.、..4  ,,、..605 3  :、(Ⅰ).      A,A0———,m3m-2s-1MPa-1Bij,Bi———Di,Dj,Dij———i、jij,m2s-1Dim,Djm,Dijm———i、jij,m2s-1Dw,Dwm———,m2s-1F———Faraday,Cmol-1Fsi,Fsw,Ffi,Ffw———i、,NJfv,Jsv,Jv———、,m3m-2s-1Ka———,m3mol-1

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功